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Abstract— An important tool of the Lean management is the
”Spaghetti Diagram”, which helps to establish the optimum
layout for a department or ward based on observations of the
distances traveled by patients, staff and/or products (e.g., x-ray
machines). The spaghetti diagram is usually created manually
in which the movements of the staff member or patient are
visually observed, which suffers from several challenges. There-
fore, In our previous work, we reported the development of
SmartSpaghetti system, which generates the Spaghetti Diagram
in an automated and non-intrusive way by tracking a human’s
location using the smartphone’s inertia sensors. In this paper,
we address the challenges of the SmartSpaghetti system to
track the human’s location using the distance and the direction
change estimation in an accurate and robust way. Finally, we
evaluate our distance and direction change estimation technique
of the SmartSpaghetti system.

I. INTRODUCTION

Now-a-days many leading healthcare institutions are fol-
lowing a management approach called Lean in order to im-
prove the quality and the efficiency of the healthcare system.
Lean is a quality improvement philosophy based on the
Toyota Production System that processes to maximize cus-
tomer value while minimizing the waste. Recent studies [1],
[2] show that healthcare organizations are adopting Lean
management to improve their process and outcomes, reduce
costs, and increase satisfaction among patients, providers,
and staff. An important tool of Lean management is the
”Spaghetti Diagram”, which help to establish the optimum
layout of a department or ward based on observations of
the distances traveled by patients, staff and/or products (e.g.,
x-ray machines).

Currently, the spaghetti diagram is usually created manu-
ally in which the movements of the staff member or patient
are visually observed, and then, are manually drawn as lines
on the layout diagram of the area under concern (figure 1a).
Clearly, this traditional way is very inefficient and tedious.
We proposed SmartSpaghetti system in our previous work
[3] where we leverages the inertia sensors (i.e accelerometer,
gyroscope, magnetic sensor, etc.) on smartphones carried
by physicians and staff members to detect and track their
movements and map these movements to flow paths in order
to generate the Spaghetti Diagram in an automated, low cost,
low overhead, and transparent way. More specifically, the
system estimates the changes in user’s direction as well as
user’s traveled distances. As a continuation of our work, in
this paper we improvise the SmartSpaghetti system to use
smartphone’s sensors to track the human’s location in an
accurate and robust way.
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Fig. 1: (a) Example of Spaghetti Diagram. (b) Stride length
estimation error at two different speeds.

In our previous work [3], we mentioned several challenges
in regards of distance and direction change estimation. For
example, In distance estimation it is challenging to convert
the number of strides to the actual distance traveled by the
user. Typically the stride length varies from user to user based
on their height and weight. More importantly, even for the
same user stride length can vary with the speed of walking.

Detecting the users direction changes, regardless of the ori-
entation and the position of the smartphone (i.e. shirt pocket,
pant pocket, in bag, in user’s hand, attach to belt etc.), is a
challenging task. Given the inaccuracy of compass/magnetic
field sensor in smartphone in indoor environments due to
the surrounding ferromagnetic devices similar to the ones at
hospital environment, we develop in this paper a technique
to find the relative rotation/turn of the user with respect
to the user’s movement direction rather than using absolute
compass reading.

We summarize our contribution of this paper as follow:
• Development of a stride detection algorithm to effi-

ciently detect the users stride using inertial sensors.
Given different users have different strides and speeds,
the proposed algorithm is adaptable to detect and esti-
mate different stride lengths corresponding to different
users and different speeds.

• Development of a robust direction change detection
algorithm that infers a a user’s relative direction changes
by fusing multiple sensors of the smartphone.

• Evaluate the developed distance and direction change
estimation technique.

II. BACKGROUND & RELATED WORK

In our previous work of SmartSpaghetti [3], we have used
the state-of-art Dynamic Time Wrapping(DTW) algorithm
to detect the user’s stride. Then we multiply the number
of detected strides with the Human’s average stride length



to estimate the distance traveled by the user. Unlike our
previous work, in this paper, we develop an adaptive DTW
algorithm that measures the frequency of a stride. Then we
build the well know personalized stride length model that
map the frequency of strides to the stride length. Thus we
estimate the distance traveled by the user more accurately.
In direction estimation, we use the orientation sensor (from
Android API) in our previous work. Note that, In our
previous work, users have to hold the phone in their direction
of walking, which is unlikely in our scenario. In addition,
we found that the orientation sensor reading is highly noisy
due to the surrounding ferromagnetic devices. Therefore,
in this paper, we use the sensor fusion technique to fuse
the accelerometer and the gyroscope sensors to measure the
direction of the user’s walking regardless of how he/she
carries his/her phone.

Recent related works [4], [5] utilize the existing inertial
sensors in off-the-shelf smartphones to track the user’s indoor
location, but they depend heavily on the knowledge of the
environment. For example, the proposed system in [4] highly
depends on the layout of the building, which is not practical
to build the Spaghetti Diagram. The UnLoc system [5]
requires to know enough landmarks of the environment
in order to calibrate the estimated location using inertial
sensors. However, besides the overhead of the initial training
phase to build the database of landmarks, the UnLoc perfor-
mance deteriorates when there are not enough distinguishable
landmarks.

III. DISTANCE ESTIMATION

In distance estimation we estimate the distance at each
stride. First, In order to detect the stride, we apply an
adaptable stride detection algorithm. Second, we utilize a
personal stride model to infer the user’s stride length. Thus
we have following two actions, i) Stride Detector, and ii)
Personalized Stride Model.

Stride Detector: In stride detection we use the commonly
used accelerometer and the gyroscope sensors of the smart-
phone to detect and track user’s stride. Figure 3a, shows the
details of our adaptive stride detection algorithm. Given that
the stride detection is activated when a user begins moving,
we use a change in gyroscope sensor reading above certain
threshold as an indication of movement and initiate the
stride detection algorithm to start capturing the accelerometer
data. In our implementation, we set this threshold value to
0.3. Given that stride length is proportional to the walking
speed [7], mmax represents the maximum length of a person
stride in terms of samples size and is defined as follows,
mmax = smax

vmax
× fa, where smax is the maximum length

of a person stride, vmax is the maximum walking speed of
person, and fa is the collection frequency of accelerometer
samples from the smartphone. Similarly, mmin, which is
the minimum length of a person stride in terms of samples
size, is defined using smin and vmin values. We used the
smax, vmax, smin, and vmin values defined in [7] in our
stride detector algorithm. Since we used fa = 50 samples/sec
in our implementation, the corresponding mmax and mmin

values we used are 65 and 25 respectively.
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Fig. 3: (a) Stride detection in raw sensing data. (b)Accuracy
of the stride model in estimating the average stride length.

After collecting mmax number of raw 3-axis accelerom-
eter samples, we calculate the vector magnitude of each 3-
axis accelerometer sample in order to make our algorithm
independent of the user orientation. Similar to the other
algorithms [6], [4], [5], we apply the IIR (Infinite Impulse
Response) low pass filter to reduce the impact of the noise of
the mmax samples. Then, we normalize the mmax samples
before feeding it to the Dynamic Time Wrapping (DTW)
algorithm [6]. The DTW algorithm compares the similarity
between the predefined stride pattern (with size n samples
where n ≤ mmax) and the captured mmax samples to
detect whether a stride exists within the mmax samples.
Unlike correlation and threshold-based methods [4], [5],



DTW adaptively detect user strides regardless of the different
lengths corresponding to different walking speeds. In our
implementation, we used the predefined stride pattern of size
n = 45 samples.

The DTW algorithm calculates d[n×mmax] matrix scores
with positive values. The lower score of d[i, j] indicates a
better matching between predefined stride pattern of size i
and the captured samples of size j. Unlike common use of
the DTW algorithm [6], we search for a cell d[n,m] with the
minimum value between d[n,mmin] and d[n,mmax] cells.
(the minimum value at the green dotted curve In the Figure
3a). If this minimum value is below a certain threshold ∆,
then a stride length of m samples is detected. Otherwise,
there is no stride detected within the captured mmax sample.
By conducting several experiments, we set the threshold ∆
to 0.4 in our implementation. If a stride is detected, then we
shift the searching window for detecting the next stride by
m samples. Otherwise we shift it by mmax samples. Figure
3a shows how accurately the strides detected by our scheme
match the actual accelerometers samples corresponding to
user strides in a walking experiment.

Personalized Stride Model: We use the commonly used
following stride length model [6], [4] as our personalized
stride model, s = a× f + b, where s is the stride length, f
is the frequency of strides, and a, b are the person-dependent
constants. In order to define the personalized stride model,
we have to calculate the constant parameters a, b for each
user. In a controlled experiment we told the users to take few
strides, then we measure the traveled distance to calculate
their model parameters using line fitting algorithm.
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Fig. 4: Three different coordinate system and their relations.

Evaluation: In figure 3b, we plot the estimated stride
length error by building the stride model from 5,10, and
15 number of strides. Increasing the number of strides to
build the model reduces the overall error of estimating the
stride’s length. In figure 1b, we also evaluate our adaptive
stride length estimation technique for two different speeds.
The speed 1.7 m/sec and the 2.2 m/sec is the normal and the
fastest walking speed of a human being respectively. In both
speed, we found almost similar distribution of estimation
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Fig. 5: Sensor Fusion block diagram.

error. More specifically, about 90% of the estimation error
is less then 6cm for both speed.

IV. DIRECTION ESTIMATION

In a realistic environment, the orientation of the smart-
phone is independent with respect to the user’s direction of
movement. Therefore, It is a challenging task to determine
the user’s direction changes using the smartphone’s sensors
reading. In order to address this challenge, we consider three
different coordinate systems, and their relation to each other.
Figure 4 shows these three coordinate systems, First is the
phone’s coordinate system which is shown in the figure 4.
Second, the human’s walking coordinate system which rep-
resents the human’s movement direction (figure 4). This
human’s walking coordinate system represents the forward
direction, side, and gravity.The third coordinate system is the
global coordinate system which represent the north pole,the
east and the gravity of the earth. The global coordinate
system is a fixed coordinate system, while the other two
coordinate systems are not fixed. For example, the phone’s
coordinate system can vary for different orientation of the
phone. The human’s coordinate system also changes with
the direction of human’s movement. Thus our idea is to map
the phone’s and human’s walking coordinate systems to the
global coordinate system. In phone’s coordinate system, we
need to determine the three rotation or orientation(αx, βy, γz)
around the three axes to transform the phone’s coordinate
system to the global coordinate system.

In determining the phone’s orientation, we just use the
accelerometer and the gyroscope sensors. We avoid the
magnetic field/compass sensors due to its high sensitivity to
the surrounding magnetic devices. Figure 5 shows the block
diagram of the sensor fusion technique that we have used to
determine orientation of the phone with respect to the global
coordinate system.

In human’s walking coordinate system, the gravity (G)
axis is same as the -z axis in global coordinate system.
Moreover, the other two axis the forward direction (F )
and the side (S) are in x, y plane of the global coordinate
system. However, the orientation of the F and S might
not be same with respect to y and x axes (figure 4). Note
that, the linear accelerometer reading from the smartphone
is in respect to the phone’s coordinate system. Therefore
we use the estimated orientation αx, βy, γz to transform
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Fig. 6: Sequence of non-overlapping PCA window. The blue
line represents the PCA axis.

the linear acceleration reading of the smartphone to global
coordinate system. Now, if we plot the linear acceleration
reading in the x, y plane of the global coordinate system
then the highest variation of changes of the projected linear
accelerometer sensor reading will indicate us the direction
of the human’s walking movement, which is basically the
forward direction F -axis. We apply the Principal Component
Analysis (PCA) [8] on the transformed samples to find out
the direction of the F axis in the x, y plane. Note that in
the implementation we use 25 samples as our PCA window
where 33.36 is our sampling rate per second. Figure 6
shows four sequential PCA window where the user took a
90 degree turn. The dots in the plots are the transformed
linear acceleration samples in the x, y plane of the global
coordinates. The straight line in the plot represents the PCA
axis which is the user’s walking direction. In figure 6, the
PCA window 2 to 3 shows the transition of the user’s 90
degree turn.

Evaluation & Discussion: In figure 7a, we evaluate the
stability of our direction estimation technique while user
is walking straight. In straight walking, the Cumulative
Distribution Function (CDF) [9] plot shows that 98% value
of the estimated direction change is less then 10 degrees.
In figure 7b, we evaluate our direction estimation technique
where we took a sequence of direction changes(x axis), and
the y axis shows our estimated direction changes. The solid
line in figure 7b represents the ideal situation and the dotted
line represents the estimation. Note that, we use the right
and the left turn as the positive and the negative direction
change respectively. In this evaluation experiment, we place
the phone in the pant pocket while walking.

We observe, the linear acceleration samples in a PCA
window provides information about the walking speed of
the user. Over the experiments, the range of sample’s value
in a PCA window spread out more as the user starts to walk
faster. For example, the PCA window 2 in figure 6, the linear
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Fig. 7: (a) CDF of Direction error while user is walking
straight. (b) Evaluating different degree of relative direction
changes.

accelerometer samples are less spread out compared to other
PCA windows. Note that, In the PCA window 2, the user
initiates the turning event and before the turning the user
slows down. Moreover, before the turning we observe that the
sample points are more randomly scattered, where in other
PCA windows the sampled points show a certain pattern of
direction. V. CONCLUSION

In this paper, we develop two important techniques for
the SmartSpaghetti system; distance and direction change
estimation. The distance estimation technique is based on the
mechanism of detecting strides and estimating the stride’s
length. In this paper, we develop the adaptive stride and
stride’s length estimation technique regardless of the users
walking speed. Moreover, in the direction estimation tech-
nique we relate the three coordinate systems, thus we can
estimate the direction changes regardless of what the ori-
entation of the user’s phone is. We also apply the sensor
fusion technique, where we use both the accelerometer and
the gyroscope sensors. Therefore it reduces the impact of the
surrounding noises from the ferromagnetic devices.
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