Audio-WiFi: Augmented WiFi Network with Audio Channel for Smart Devices

Mostafa Uddin, Tamer Nadeem

Motivation

→ WiFi is a common communication interface for smart devices.

- → WiFi still has some perturbation such as:
 - Poor utilization of wireless channel.
 - Energy consumption during idle state.
 - Unfairness issue due to capture effect.

Motivation

- → Additional channel can be utilized to enhance the performance of WiFi.
- → Targeted devices are smart devices like smart phone, palm, tablet etc.
- →Smart devices can have following interfaces as additional channel:
 - → WiFi
 - **→**Bluetooth
 - **→**Zigbee
 - → Light/Camera
 - → Audio [Can we utilize this interface]

Proposed Idea

Utilize audio channel as an augmented channel to enhance WiFi performance.

We like to exploit audio frequency beyond human ear perception as a parallel communication channel with WiFi.

Why Audio?

- It is non-interferential with radio network.
- No additional bandwidth required from WiFi.
- Speakers/Microphones are very common hardware component in smart devices.
- Smart devices are capable of generating and discerning audio beyond human ear.

Audio-WiFi Network

Preliminary Architecture of proposed Audio-WiFi Network

Audio-WiFi Network Architecture

A-MAC: Can be utilized by MAC and TCP/IP layer to send small size data packet over audio channel.

A-PHY: responsible for signal processing and sending/receiving signal using ,mic/speaker

TCP/IP and MAC has control path with A-MAC.

Preliminary Evaluation work

Sending/receiving data frames over audio channel

- M-array FSK modulation/demodulation.
- We use 16 frequencies for our modulation/demodulation.
- Each frequency represents a symbol of 4 bit.
- Frequency range from 18000-21200Hz.
- Equal frequency spacing.

$$s_m(t) = asin(2\pi f_m t) \quad t \in [0, T]$$

- 30bps as data transmission rate. *T* is the Symbol Duration
- Packet size is 25byte.

Preliminary Evaluation Result

Packet Error Rate(PER) over different distance

Challenges for Audio (1)

 Data rates (R) Depends on Symbol duration(T) and Frequency spacing(S).

$$\downarrow T \longrightarrow \uparrow R$$

$$\downarrow S \longrightarrow \uparrow R$$

According to Nyquist–Shannon theorem Symbol duration is lower bounded by the bandwidth.

$$T > \frac{1}{2B}$$
 B is the Channel Bandwidth

Bandwidth (B) is limited to 2-3KHz
Beyond humar ear perception in Smart phones

Challenges for Audio (2)

Doppler effect impose constraint over Frequency Spacing (S).

 $\begin{array}{c} s = \text{Sound velocity} \\ \pm 2f_0\frac{v}{s} \\ \text{v} = \text{Receiver velocity} \\ \text{f0} = \text{Actual frequency} \end{array}$

Sound Speed, s << radio propagation speed

Reverberation impose constraint over duration of symbol(T).

Audio-WiFi Challenges

Challenge1: Audio channels suffer from low data rate.

Possible Solution:

- Use audio channel to transmit only small control frames.
- Use different audio tones instead of actual bits for control frames.

Challenge2: Frame-level synchronization between WiFi and audio.

Possible Solution:

- Use single audio frame for aggregated WiFi frames.

Ongoing Work

- → Evaluation of the limitations and the characteristics of audio channel in indoor environment.
 - Energy consumption of audio hardware.
- → Development of Audio-WiFi schemes that utilize audio channel to enhance Wi-Fi network performance.
 - Switching on/off the Wi-Fi interface using audio channel during.
 - Using audio channel as an control channel for sending ACK frames while WiFi is sending data frames.
 - Utilizing audio channel for coordinating between node to reduce the collision.

Thank you

Email:

muddin@cs.odu.edu

Webpage:

http://cs.odu.edu/~muddin/audiowifi

