

1.MOTIVATION

Detecting and tracking individual running home's appliances and electrical devices (Machines) provide important information for number of applications:

Detecting Human Activities, Monitoring Energy Usage for individual machines, Machine Health monitoring, Context-aware applications, Home automations.

→ Smartphone comes with useful sensors that can be utilized.

3.SOUND SENSING FRAMEWORK

→We used microphone sensor of the smartphone as a proof of concept.

→Build a sound profile, which represents an acoustic model for each machine.

Recognize the machine using the collected real-time features and pre-learned acoustic models.

> $\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$ $\Sigma = \frac{1}{1-N} \sum_{i=1}^{N} (x_i - \mu_{ML})^2$

 $F^{l} = \arg \max_{m} \mathcal{N}(\vec{f}, \vec{\mu_{m}}, \Sigma_{m})$

Naïve Bayes classifier with equal prior probability

Multivariate Gaussian Acoustic Model

5.CHALLENGES

Some smartphone sensors are limited in functionality.

 Smartphone sensors show differences in sensitivity among different devices and platforms.

Detecting multiple machines at a time and recognizing running machines from different positions.

Location and orientation of the smart phone.

MachineSense: Detecting and Monitoring Active Machines using Smart Phone

Mostafa Uddin, Tamer Nadeem Department of Computer Science, Old Dominion University {muddin, nadeem}@cs.odu.edu

Low pass narrow bandwidth Frequency Response of Magnetic sensor reading for X, Y and Z axis (Nexus S) Multi-sensing frame work has two components:

- Building fingerprint profile:
- machine.
- **Online** detection:

- build fingerprint Profiles.

Detection of running machines from different positions. In the table "none" is a sound profile that represents when none of the machine is running. From each location we identified the machine using different orientation of the mobile phone.

→ Making the challenges more approachable by knowing the layout/position of the machines in addition with the smart phone location. Extensive experiment on using smart phones location in addition with layout information of the machines, to detect multiple machine.

• Leveraging multiple smart phone with wireless communication for improvising the detection of multiple machines.

•Interfacing additional sensors with the smart phone to create sophisticated fingerprints for the machine.

http://cs.odu.edu/~muddin/machinesense

2.MULTI SENSING FRAMEWORK

→ Identify the sensors that are relevant to the

→ Building sensing profile using each sensor. Combining multiple sensing profile.

→ Collecting sensing data and fusing them. Detecting the running machines using pre-

4.PRELIMINARY EVALUATION RESULT

Circle 1,2,3 shows the position of a microwave, a fan and a vacuum cleaner respectively at our lab office. Square 1,2,3,4 and 5 shows the position from we have identified the current running machine using our prototype application. We develop a prototype system in Android phone (Nexus S)

Comparison of actual running machine and recognized running machine using our prototype system for 25 *minutes of time.*

6.FUTURE WORK

