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Abstract—Bluetooth Low Energy (BLE) is a personal area
wireless network technology that is of increasing importance
for emerging Internet of Things (IoT) deployments. By design,
BLE supports short-range, single-hop communication between
a pair of BLE devices. As such, native BLE does not allow
network-based policy control or in-network functions for service
enhancement. These limitations are impediments to any large-
scale BLE based IoT deployment (e.g., in hospital environments),
where such sophisticated network-based visibility and control
may be required. Relying on cloud-based solutions to meet these
requirements has many known shortcomings [1], [2]. This paper
proposes an SDN-based architecture for enabling wide area IoT
deployments using BLE devices at the edge. We introduce a
programmable BLE service switch (BLESS) that is transparently
inserted between two communicating BLE devices. BLESS can be
programmed at the service layer by a central controller to enable
flexible, policy-based switching, as well as various in-network
operations in BLE networks. We describe the design of BLESS,
its implementation using P4 and OVS, and illustrate its utility
through practical use cases.

I. INTRODUCTION

With the rapid growth in the Internet of Things (IoT), Blue-
tooth Low Energy (BLE) [3] devices are finding widespread
applications in medical and health care services, home au-
tomation, factory automation, sensing and control, consumer
electronics etc [4]. By 2020, the global value of BLE devices
deployed for IoT services is expected to be as much as $5.57
billion, with most of the value coming from devices in health
care and manufacturing [5]. This popularity of BLE stems
from its two key attributes [4]: (i) a low power physical
and data link layer suited to low cost devices with long
operating life on battery, (ii) a transaction oriented service
layer, comprising of Attribute Protocol (ATT) and Generic
Attribute Profile (GATT), that facilitates fast development of
different services on the devices.

BLE devices fall into two categories; peripheral and central.
In health care applications, for example, heart rate monitors,
blood pressure monitors, weighing machines, etc. are periph-
eral devices. Devices like smart phones, tablets, laptops are
central devices that access or modify data from the periph-
erals. Creating an IoT-service needs establishing transactional
relationships between central and peripheral devices so that a
central device can read/write parameters of the service profiles
offered by the peripherals. For example, with a native BLE-
based patient vitals monitoring service, an application running
on a tablet transacts (i.e., communicates) with heart rate and
blood pressure monitors’ service profiles, and reports them on
a GUI for each patient. With the envisaged growth in feature-

rich devices incorporating useful service profiles, the potential
for creating a variety of networked services comprising large
numbers of interconnected BLE devices is expanding [6].
These networked services will require establishing transac-
tional relationships amongst large numbers of BLE devices
and managing them to permit service-enhancing operations
such as selective set-up or tear-down of transactions, filtering
on BLE packet fields, in-network packet generation etc. (see
Section II for motivating use cases needing these capabilities).
While each individual device can be (re)configured to comply
with the necessary dynamic relationships, it quickly becomes
unmanageable as devices get reassigned, new devices get
introduced, new services are created, etc. This is a major
drawback in using basic BLE that needs to be addressed for
large-scale BLE-based IoT service deployment.

Existing schemes for IoT service creation and management
rely solely on cloud-based solutions where all IoT transactions
are sent to a cloud-hosted application which decides on any
needed follow-up action. As argued in [1], [2], a cloud-only
solution is not best-suited for IoT-based applications due to
its inadequate support for privacy and security, scalability,
latency and bandwidth guarantees, etc. While a cloud-based
approach may work for “ambient data collection and analytics”
applications [7], [1], “real-time applications with low-latency”
work better by “giving users some control over where ap-
plications execute” [1]. In addition, cloud-based approaches
either require IP protocol stack in an IoT device, or need
to connect the device to the cloud through a gateway. The
former approach is not well-suited for devices with small
foot-prints [8], [9]. The latter approach requires development
of special application level or operating system support (e.g.,
programming model [10] or virtualization of BLE device [11]).
Neither of this is satisfactory. Section VII discusses inadequa-
cies of the current solutions in more detail.

Our premise, in this paper, is that transactional relationships
in BLE are best managed when the transactions are monitored
and controlled within the network, and not solely at individual
devices which are resource constrained and hard to modify [6].
Toward this end, we apply the concept of software defined
networking (SDN) to BLE networking. To control BLE com-
munication using SDN flow rules, we introduce a new “switch
node”, which we call the BLE Service Switch (BLESS), into
the data path between peripheral and central devices. BLESS
maintains link layer connections to the devices to support
peer-to-peer connectivity, but controls ATT packet flows at
the service layer using SDN rules that are installed by a



central controller. In particular, BLESS exploits recent efforts
in protocol independent packet processing (e.g., P4 [12]) to
program the BLE-based data plane. To our knowledge, BLESS
is the first use of SDN in the BLE context, and the first P4
use case for non-Ethernet based packet processing.

We implement BLESS by extending and customizing Open
vSwitch (OVS) and its P4 adaptation called PISCES [13].
We develop practical use cases on our current prototype, and
show how incorporating SDN technology enables IoT-based
service automation in a BLE network. The main contributions
of this paper are: (i) Extending SDN to BLE networking for in-
network BLE transacation management for large-scale wide-
area BLE-based IoT services, (ii) A prototype implementation
using P4 with extensions, which to our knowledge is the first
use case of P4 in non-Ethernet context, (iii) Practical use cases
that illustrate the benefits of the developed system for creating
large-scale IoT services using native BLE applications.

II. MOTIVATING USE CASES

Here we describe example services that illustrate why and
how control of ongoing transactions from within a BLE net-
work facilitates management of large-scale IoT-based services.

Service slicing: In a hospital environment, BLE peripherals
like heart rate and temperature monitors typically offer two
service profiles: one for the monitored vitals and the other for
device battery status. A medical professional is interested in
the vitals of his patients only, while the administrator respon-
sible for device maintenance needs to access the battery status
of any device, but without access to the vitals (for privacy
reasons). This motivates the creation of device-dependent,
service-specific network slices. A physician’s slice may consist
of the physician’s central device and all the health related
services of the peripherals carried by this physician’s patients
only. An administrator’s slice may span across his central
devices and the battery status service of all available peripheral
devices. Note that while these two slices must remain isolated
at the service layer, they do overlap at the device connectivity
layer. Slices may overlap at the service layer, for example,
when a patient is monitored by a nurse in addition to the
physician. Service slices must be dynamically created, and be
amenable to frequent and real-time association changes in both
central and peripheral devices, and associated services.

Currently, a BLE central device that connects (at the link
layer) to a peripheral gets unrestricted access to any pro-
file information, making service slicing and access policing
impossible at any layer of BLE. While applications running
on the central device can be made to filter out unauthorized
access, this is not an acceptable solution from either a security
or management perspective. However, with full control of
transactions from within the BLE network, service slicing can
be enabled by pushing policy-control flow rules that allow only
certain group of transactions based on their origin, destination
and type of query, and deny the rest. Use of SDN eases the
manageability and installation of the flow rules in the network.

Service enrichment: In the above scenario, when a patient
is monitored by both a nurse and a physician, their central

devices carry transactional relationships with the same heart
rate monitor. It may be desirable to report the heart rate
periodically to the nurse, but only the anomalies to the
physician (e.g., rates above or below some threshold values
based on the age of the patient). The heart rate monitor service
is equipped to notify the current vital that can satisfy the nurse’
requirement, but not the physician’s. While an application
at the physician’s central device can filter out unnecessary
notifications, this does not reduce the flow of transactions into
the device. Moreover, the application must be reconfigured for
every patient according to the patient’s age. Using simple flow
rules in the network, one can simply forward all notifications
to the nurse’s device, and filter out unnecessary transactions for
the physician based on the value of the packet field for heart
rate, while keeping the native BLE applications unmodified.

Service composition: In a smart home environment, sup-
pose a smart thermostat (a central device) controls an outdoor
smart air conditioner (a peripheral) by turning it on or off
based on the indoor temperature. A simple BLE app running
on the thermostat can perform this task quite efficiently. Now
suppose the same household installs a dehumidifier in the
basement and would like to run it all the time except when
the air conditioner is on. Definitely the dehumidifier can be
connected to a smart power socket (a peripheral), but the
thermostat cannot control the socket without changing its
native BLE app. To support this scenario, the BLE network is
programmed such that when a “turn on” transaction from the
thermostat to the air conditioner is observed, a new “turn off”
transaction to the smart socket is triggered (and vice versa).

III. BACKGROUND AND CONTRIBUTIONS

A. Bluetooth Low Energy Protocol

BLE is a connection-oriented peer-to-peer communication
technology where peripheral and central devices communi-
cate in a peer-to-peer fashion [3]. Prior to communication,
peripherals announce their discoverability and connectability
via BLE advertisement packets. Any central device listening to
the advertisement can initiate a link layer connection with the
peripheral. After establishing a link layer connection, higher
layer communication can happen in both directions. In the
communication, a BLE device is identified using a 48 bit
address. Device addresses can be of two types: a public device
address that never changes, and a random address that may
change during device boot up. Once a connection is set up,
the peripheral stops advertising. Typically, the centrals that run
the client applications send requests to the peripherals for the
services they support, and the peripherals, running as servers,
respond. A central can connect to multiple peripherals giving
rise to a star topology. Since BLE version 4.1, a peripheral
also can connect to multiple central devices simultaneously,
though this is rare in practice [11]. Connectivity to centrals by
a peripheral can be restricted by white-listing only the allowed
centrals. Also devices can be bonded so that a peripheral
advertises only for the central that it intends to connect to.
As BLE does not support packet routing natively, reachability



from a device to other devices is severely limited unless the
devices are directly connected.

On top of the link layer, BLE runs a Logical Link Control
and Adaptation Protocol (L2CAP) that is used for multiplexing
different higher layer protocols and keeping them oblivious
to link layer’s packet structure through fragmentation and re-
assembly. The Generic Attribute Profile (GATT) layer provides
a data abstraction and service description model for a BLE
device using attributes expressed as key-type-value tuples. The
attribute key is a 16 bit handle used to access it. The type is a
universally unique identifier (UUID) which can be 128 or 16
bits. GATT runs atop the Attribute Protocol (ATT) which is a
stateless transaction-oriented command-response protocol used
to exchange the attributes between peers on top of L2CAP.
ATT commands can be of three types, namely, Read, Write
and Notify. ATT maintains strict sequencing of requests in
the sense that if there is any outstanding response from a
peripheral device, no further requests can be sent to it till
the response is received. A peripheral provides one or more
services using GATT profiles (either vendor or Bluetooth SIG
defined), and exposes the service(s) to the world by behaving
like a server at the L2CAP layer. A central device connects
to the peripheral at the L2CAP layer and accesses the service
using ATT transactions. Access control to a device in BLE
is mostly limited to the link layer during connection setup.
As a consequence, once a central device gets connected to a
peripheral, the former can access any service offered by the
latter. So dynamic device selection based on service is not
possible at a higher layer where the service is created [11].

B. Challenges and Contributions

The first challenge in extending SDN to BLE networking is
to decide at which protocol layer packet flow rules should be
introduced. As noted before, when a central device establishes
a link layer connection to a peripheral device, it can access
all the services supported by the peripheral device. However,
to offer flexibility in service creation, the access to the service
profile (or different sub-profiles within a profile) must be
dynamically controllable depending on the role of the central
device (refer to Section II). To keep a clear separation between
connectivity and service, we choose to apply policy control at
the service layer of BLE (composed of ATT and GATT) where
service profiles are maintained and accessed. This implies that
even if a peripheral device is connected to multiple central
devices, accessibility to service profiles is controlled based on
the identity of the central devices. Moreover, as the access
policy becomes dynamically modifiable from SDN’s central
controller, new services can be added, and existing services
modified without interrupting ongoing services.

The next challenge is to determine a node in the BLE
network that is suitable for applying the policy control as
ATT packets flow through the node. BLE is a peer-to-peer
protocol and does not require packet forwarding using an
intermediary switch between the devices. Without a switch
in place it is not possible to inspect the packet flow between
the devices, which in turn prohibits any policy enforcement.
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Fig. 1: (a) SDN controlled BLE network. (b) BLESS and BLE
device link layer connection.

To address this challenge, we introduce BLESS, a switch in
the BLE network that is transparently inserted between the
devices without violating any BLE protocol. BLESS resides
in the data plane, has access to the full protocol stack, and is
used to enforce policy at the service layer.

Challenges in building BLESS are manifold. Existing SDN
switches are IP protocol based. Their connectionless architec-
ture is not suitable for BLESS as BLE is natively connection
oriented between the peers. Hence, we design BLESS so
that it behaves as a central device to a peripheral device
and as a peripheral device to a central device. In its role
as a peripheral device, BLESS advertises on behalf of a
peripheral device that is connected to it. In its role as a
central device, BLESS maintains a link layer connection with
each peripheral device within its range. Since a central device
connects to each peripheral device separately, a single link
layer connection between BLESS and a central device is
not enough to multiplex across different peripheral devices.
Therefore, in its role as a peripheral device, BLESS maintains
one connection per peripheral device that the central device
needs to communicate with.

Clearly, BLESS (transparently) breaks the native peer-
to-peer connection model and introduces the capability to
“forward” packets. This necessitates device addressing and
identification in BLESS, which are not available in the service
layer. BLESS adapts metadata structures and exploits ATT
protocol’s serialization to resolve correct packet addressing
and forwarding (see Section IV).

Once BLESS is inserted in a network of BLE devices, a
central controller pushes ATT and GATT layer service rules
into it in real-time. BLESS employs a stateless match-action
packet forwarding model to examine each packet and apply
the action of the matched rule that enforces access and policy
control.

To extend reachability, we augment BLESS with backhaul
IP connectivity so that multiple such switches can be con-
nected over an IP network (see Fig. 1a). Once a periph-
eral device gets connected with a BLESS node, the central
controller determines the set of BLESS nodes that should
announce on behalf of the device via BLE advertisements. This
makes the peripheral device “reachable” to a central device
that is connected to a remote BLESS which is beyond the
peripheral device’s physical range. If the central device wants
to connect to the peripheral device, it simply responds to the



advertisement packet originating from the local BLESS. For
example, in Fig. 1a, BLESS 2 can advertise for peripheral
device P3 and let central device M2 connect to it even
though they may be far apart. If peripheral and central devices
are connected to two different switches, the SDN controller
installs forwarding rules to carry packets from one BLESS to
another within an IP tunnel.

IV. BLESS ARCHITECTURE

In order to implement rule-based control in native BLE,
BLESS is transparently interposed between any two communi-
cating BLE devices, and then acts as a programmable software
switch for the BLE communication between connected de-
vices. Multiple of such BLESS nodes are interconnected with
a backhaul IP network to form the data plane of BLE network
infrastructure. In such network deployment, a BLESS node
has three key functional components. The BLE connectivity
module creates and maintains link layer connections with
peripheral and central devices within its vicinity. The BLE
packet switching module applies rule-based control on native
BLE packets between connected devices based on match-
action rules. The IP connectivity module creates and manages
backhaul IP connections which are used to tunnel BLE packets
to other remote BLESS nodes over an IP network. Essentially
the BLE/IP connectivity modules are responsible for BLESS
management plane functionality (i.e., creating links/ports),
while the packet switching module is responsible for BLESS
data plane operations which can be programmed with an Open-
Flow control plane protocol. In the following, we describe the
BLESS components in more detail.

A. BLESS Components

1) BLE Connectivity Module: At the link layer, BLESS
needs to provide a transparent one-to-one connection between
a pair of peripheral and central devices. To achieve this,
BLESS operates a designated port on which all advertisements
from nearby peripheral devices are received. Upon receiving
an advertisement, this module by default forwards it to the
controller, which decides whether to accept the advertisement.
If it is accepted, the controller instructs the connectivity
module via a management plane protocol to set up a link
layer connection with the peripheral device and to create
a corresponding port (e.g., lp1, lp2, lp3 of Fig. 1b). We
can ensure that no other central device directly connects to
the advertising peripheral device by white-listing only the
BLESS nodes in the peripheral device and/or by adopting an
advertisement jamming scheme [14]. From then on, BLESS
advertises on behalf of the connected peripheral device, using
the peripheral device’s address. When multiple BLESS nodes
are interconnected via backhaul IP connections, depending
on connection policies, the controller can send the received
advertisement to other remote BLESS nodes as well, so
that they can also participate in the advertisement for this
peripheral device within their own coverage areas.

In response to an advertisement from BLESS, a central
device connects to BLESS at the link layer. Since BLESS
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Fig. 2: BLESS architecture.

uses the same advertisement packet with the same address
as received from the peripheral device, the central and the
peripheral devices get connected via BLESS at the link layer
transparently. This also means that when a central device
connects to n peripheral devices via BLESS, there are n link
layer connections between the central device and BLESS. This
is in conformance with BLE standard 4.1 and later that allows
a peripheral device (BLESS in this case) to connect with
multiple central devices. Moreover, by allowing multiple link
layer connections from a central device to BLESS (instead of
a single connection), the client application(s) running on the
central device can remain unmodified (see Section IV-A2).

The connectivity module creates a port for each link layer
connection from a central device, which has a one-to-one
mapping to a port created for a peripheral device (as shown
in Fig. 1b). When a new port is created for a peripheral
or central device, the controller is notified of this event
(e.g., port-status message in OpenFlow [15]), upon which
it assigns a unique address to the connected device (see
Section IV-A2).

A link layer connection between BLESS and a BLE device
can be closed if the device permanently becomes out of
range or moves away to connect with a different BLESS
node. When this happens, the connectivity module removes the
corresponding port in BLESS, and the controller is notified of
this event, similar to port creation events. In response, the con-
troller removes the corresponding match-actions rules across
different interconnected BLESS nodes. To avoid frequent port
deletion/re-addition and spurious rule updates from transient
connection failures, the connectivity module sets the timeout
for a port (instead of removing the port right away) when
a connection associated with the port gets closed. If a new
connection is re-created within the timeout period using the
same device address recorded in the port, the port is simply
updated with the new connection.

2) BLE Packet Switching Module: After BLESS is trans-
parently placed in between two communicating devices at the
link layer, the BLE packet switching module examines the
packet flow at the service layer to enforce rule-based packet
forwarding and control. While packet forwarding requires per-
packet source and destination addresses, the service layer
of BLE uses L2CAP packets which are devoid of device
addresses. In our model, the central controller assigns a unique
address to each device when the device connects to BLESS.



A public or a static device address can be used as is since
it remains fixed for the duration of the connection. Only a
random address may be mapped to a fixed ephemeral address
by the controller (e.g., by using hashing on some of the
device parameters). The address is used globally for addressing
a device (including advertisement as described above) and
orchestrating flow rule instantiation and packet forwarding
while the device is connected to the BLESS network. The
address is carried as metadata with a packet in the service
layer to make packet forwarding decisions.

By default, packets are forwarded based on the destination
device address. It is the responsibility of BLESS to gather
the device address (and update the metadata field) based on
the port the packet comes from. Since a central device has a
unique port to connect to each peripheral device, BLESS can
easily determine the destination peripheral device address of
an incoming packet from a central device. A peripheral device
maintains only one connection/port with BLESS, regardless
of how many central devices it communicates with. Thus
an incoming packet from a peripheral device can potentially
be destined to any of the central device(s) that it commu-
nicates with. BLESS resolves the packet’s destination device
address in this case by leveraging ATT’s Sequential Protocol
feature [3], which restricts a central device to have at most
one outstanding request per peripheral device at any time.

BLESS implements a serialization mechanism that emulates
a sequential request-response at each peripheral device’s port
by controlling the flow of requests from the central devices to a
peripheral device. Only the port that is locally connected with
the peripheral device implements this serialization mechanism.
The goal of serialization is to uniquely match the response
from a peripheral device to the corresponding request, so
that BLESS can determine the destination central device of
the response. Since a central device can have multiple ports,
the central device address alone is not enough to forward a
response packet, but the central device’s port address is needed
as well to determine where to forward the response packet
from the peripheral device.

BLESS can take a naive approach of sending one ATT
request packet at a time till it receives a response from the
peripheral device. In a more pipelined approach, BLESS can
send multiple ATT request packets at a time so long as
they are not conflicting in terms of protocol parameters and
source device’s address. There are a few ATT operations (e.g.,
notification) which do not follow the request-response model,
and thus the serialization mechanism cannot be applied. In
these cases, the controller keeps additional state information
to determine the destination device address (see Section V-D).

3) IP Connectivity Module: While BLESS packet switch-
ing operates on the native BLE service layer, a backhaul IP
connectivity is needed to apply rule-based control beyond the
limited physical range of BLE devices (e.g., for communica-
tion between a pair of peripheral/central devices connected to
two different BLESS nodes). For this we make each BLESS
node support TCP/IP protocol stack. When two BLESS nodes
are interconnected via an IP tunnel as part of connection

policies, the IP connectivity module in either node establishes
a TCP connection to the other, as instructed by the controller,
and a corresponding port pair is created in these two nodes,
and BLE packets are tunneled via this port pair between them.

B. Control Plane Operations
In a network of multiple BLESS nodes, each BLESS node

connects to a central controller for management plane and
control plane operations. As management plane operations, the
central controller decides whether to allow a BLESS node to
connect to a peripheral device, as well as which pair of BLESS
nodes should be interconnected via IP tunnels. Once peripheral
and central devices are connected to BLESS, and necessary IP
connectivity is established among BLESS nodes, the controller
performs various control plane operations as follows.
• Device address assignment: assigns a unique address to

a connected peripheral device.
• Device discovery: makes connected peripheral devices

discoverable from one or more BLESS nodes.
• Service discovery: discovers available services offered

by a connected peripheral device.
• Access policy enforcement: makes services selectively

accessible to connected central devices.
• Subscription management: manages the list of central

devices subscribed for a specific notification service of a
peripheral device.

C. Data Plane Operations
BLESS’ data plane operations are performed at the ATT/-

GATT service layer, where a pair of central and peripheral
devices communicate with each other as a client and a server,
respectively, for a particular GATT service. The underlying
data exchange protocol called ATT supports three categories of
ATT commands: read attributes, write attributes and attribute
notification. As data plane operations, BLESS blocks, modifies
and forwards these ATT packets, or even generates new ATT
packets according to device-specific policies, without violat-
ing the semantics of the GATT service-level communication
between the connected devices. For this BLESS relies on a set
of match-action rules to apply to ATT packets.

V. BLESS PROTOTYPE

BLESS adopts the BLE protocol communication as the data
plane and GATT/ATT-centric flow rules for control plane.
This makes BLESS an ideal candidate for exploiting recent
advances in protocol independent packet processing [12], [16],
which lay the groundwork for the programmable switch archi-
tecture for non-Ethernet traffic. In particular, our prototype im-
plementation of BLESS builds on an existing programmable,
protocol-independent software switch called PISCES [13]
which allows a datapath compiler to convert P4-based datapath
specifications [17] into a target software switch derived from
Open vSwitch. In our prototype, we address the limitations of
PISCES’ datapath compiler, and implement BLESS-specific
components (e.g., BLE/IP connectivity modules) and custom
actions (e.g., rematch). In the following, we describe our
prototype in detail.



A. P4-based Datapath Compilation

A P4-based datapath protocol specification (known as a “P4
program”) contains the definitions of several key components
of switch processing, such as packet headers, parsers, tables,
actions and control flows, the combination of which defines
the packet processing pipeline of a switch. To instantiate our
prototype, we develop a custom P4 program that defines the
headers and parsers for processing native BLE packets, and
compile it into OVS code base with the PISCES’s datapath
compiler [13].

Fig. 3 shows BLE ATT command packet definitions in
our P4 program (more details in Section V-D). Different
ATT commands can have different packet fields depending
on the ATT_opcode in ATT_header which appears in all
ATT packets (details in [18], [19]). BLESS maintains addi-
tional per-packet metadata (ATT_metadata), which contain
relevant lower layer information like source/destination device
addresses (SID/DID), the packet’s ingress port (in_port) and
total length (length). The additional metadata fields such as
enable, index, and handle are used to implement custom
actions (see Section V-C).

The existing PISCES datapath compiler is unable to support
many new specifications of P4, which are required for BLESS.
The following are a few extensions we add to the compiler to
support BLESS.

Variable packet field: Many ATT command packets have
a variable length field which appears at most once as the
last field of a packet. For example, an ATT write request
packet (ATT_wrq in Fig. 3) has a variable length field called
att_value. Unfortunately, the PISCES compiler only sup-
ports fixed length fields in header definitions. To get around the
limitation, when a given header definition contains a variable
length field, we set the width of the field as the maximum
possible length, assuming that the MTU of a BLE packet is 23.
Based on the total length of the ATT packet (length metadata
field), BLESS can derive the actual length of a variable field.

Per-packet metadata: The PISCES compiler converts
metadata definitions in a P4 program as flow-level metadata
in OVS. Thus, if an action modifies any flow-level metadata
and applies rematch action (Section V-C), the modified flow-
level metadata will be lost during the next match-action
process. However, processing a BLE packet with a list of
attributes (e.g., read-by-type response) requires metadata to
persist across iterative executions of rematch action on the
packet. We extend the PISCES compiler to support persistent
packet-level metadata.

B. Ports in BLESS

The P4-compiled datapath allows BLESS to process na-
tive BLE packets based on match-action rules. Still missing,
however, is the BLE-native port interface for receiving and
transmitting BLE packets, which is tied to target software
switch implementation (e.g., netdev in OVS). We decide to
implement BLE-specific port interface in userspace because

1The width of “*” denotes a variable length in P4 language.

fields ATT_header { ATT_opcode :8; }

fields ATT_rrq {
  handle :16;}

fields ATT_rrp {
  att_value :*;}

field ATT_metadata {
  length  :8;
  SID     :48;
  DID     :48;
  in_port :16;
  enable  :8;  /*initial value 1*/
  index   :16; /*initial value 0*/
  handle  :16; /*initial value 0*/}

fields ATT_rbtrq {
  start_handle :16;
  end_handle   :16;
  att_type     :16;}

fields ATT_rbtrp {
  entry_length  :8;
  att_data_list :*;}

fields ATT_wrq {
  handle    :16;
  att_value :*;}

fields ATT_notify {
  handle    :16;
  att_value :*;}

fields ATT_wrp{
  /*no fields */}

ATT header

Read
request/response

Readbytype
request/response

Write
request/response

Notification

Metadata

Fig. 3: Packet field and metadata definitions for BLESS.1

the BLESS datapath processes service-layer BLE packets
which are userspace packets captured from L2CAP layer
sockets. Capturing packets in the BLE kernel space would have
the overhead of processing and filtering out different types of
irrelevant L2CAP layer packets (e.g., L2CAP empty PDU),
which are not part of BLE service layer protocol.

For BLE-native port interface, we implement two special-
izations of the generic OVS netdev port: netdev_ble for
receiving and transmitting BLE data packets, and netdev_adv

for receiving BLE advertisement packets from peripherals.
These BLE-specific netdev ports are created and maintained
by the BLE connectivity module described in Section IV-A1.
As part of port configurations, each BLE netdev port has an
associated file descriptor for either an active L2CAP socket
(in case of netdev_ble) or a listening socket (in case of
netdev_adv), via which the port reads and writes native BLE
packets. The file descriptor information in netdev is persisted
in ovsdb-server, and can be updated on the fly (e.g., in case
of temporary connection failure and recovery).

The netdev_ble port adds metadata (ATT_metadata in
Fig. 3) in each ingress packet, which are removed before the
packet is transmitted. Among metadata fields, DID (destination
address) and SID (source address) are set differently by the
port depending on its target device. If the port is created for
a central device, the port uses fixed DID and SID, as assigned
by the controller. If the port belongs to a peripheral device, it
determines DID of each ingress packet by using serialization
(Section IV-A2), while using fixed SID. For serialization, the
port maintains a FIFO queue which enqueues SID of each
egress request packet. Then for each ingress response packet,
SID dequeued from the queue is used as DID for the packet.
The serialization is disabled for a server-initiated ATT packet
(e.g., notification), in which case DID remains unassigned and
this field is ignored in the match-action rules. As an artifact
of the datapath compiler unable to support variable length
packets, the netdev_ble port adds padding to each received
packet to MTU size, which is removed before the packet is
transmitted.



C. Actions in BLESS

The BLESS prototype supports a range of actions for rule-
based control on BLE packets. These actions are realized using
a set of built-in actions (e.g., output, goto_table) from OVS
and a set of primitive P4 actions automatically generated by
the datapath compiler (e.g., add_header, remove_header,
add_to_field, subtract_from_field, deparse). Some of
these primitive actions are used as is, while others are used
to define more complex compound actions. The following is
a list of compound actions implemented in BLESS.

1) Block: This action drops a matching request packet,
creates an error response packet from the packet, and sends the
response packet back to in_port of the dropped packet. This
action is implemented with a series of remove_header and
add_header actions to convert a matching packet into an error
response packet, set_field actions to change necessary fields
in the response (e.g., swapping DID and SID), deparse and
output actions to send the response packet back to in_port.

2) Rematch: This action allows a given packet to be re-
submitted to the BLESS processing pipeline multiple times.
This is useful when applying match-action rules to the same
packet iteratively to policy control ATT commands that carry
a variable length list of attributes (e.g., read-by-type response).
The number of re-submissions by this action is controlled
by updating persistent per-packet metadata fields (index,
enable and handle). That is, each time the rematch action is
performed on a given packet, the index field increments by
one, and the handle field gets updated to point to the next
matching attribute in the attribute list. The enable field, which
indicates whether or not it is the last attribute in the list, is
used as a flag to terminate the iteration of the rematch action.

3) Remove: This action is similar to the aforementioned
rematch action, except that it removes a currently pointed
handle-value pair from the attribute list.

4) Comparison: This action is similar to the conditional
actions defined in [13]. It compares a field value with a con-
stant and applies goto_table action based on the comparison
result.

D. Rule-based BLE packet Processing

BLESS uses policy-specific match-action rules based on
native BLE packet fields as well as per-packet metadata. In
the following, we describe possible policy controls for three
basic ATT commands, and show how they are translated into
match-action rules in BLESS.

Read attributes: The read request/response ATT command
pair (ATT_rrq and ATT_rrp in Fig. 3) allows a GATT client
to read a certain attribute’s value from a GATT server using
the attribute’s handle. The read request packet contains the
attribute handle which, along with a few other fields, is used by
BLESS to find a matching rule. When a read request packet is
received, BLESS can apply either forward or block action on
the packet. In the latter case, BLESS sends an error response
packet to the client with “Read Not Permitted” ATT error code.
For a read response packet, BLESS applies forward action to
send it to the client.

When multiple attribute values of a certain attribute type
are communicated, client/server use a pair of read-by-type
request/response commands (ATT_rbtrq and ATT_rbtrp in
Fig. 3). For a read-by-type request packet, BLESS applies
either forward or block action. For a read-by-type response
packet which contains a list of attribute handle and value pairs,
BLESS can remove or modify one or more handle-value pairs
in the packet using rematch and remove actions according to
policies (e.g., to permit the client to access only a subset of
the list).

Write attributes: The write request/response command pair
(ATT_wrq and ATT_wrp in Fig. 3) allows a client to write a
single attribute value at the server based on handle information.
When a request packet comes to BLESS, it performs either
block or forward action based on the handle information. A
corresponding write response packet is simply forwarded to
the destination. There is a special write request used when a
client subscribes to a service attribute for notifications from the
server. In this case, the client sends a write request with the
attribute handle with client characteristic configuration type
(i.e., UUID = 0x2902) to the server. When BLESS applies
forward action on such a request, it also performs controller
action to send a copy of the packet to the controller. This
enables the controller to manage the set of client devices
(referred to as Notify-Set) that subscribe to the notification
for the corresponding service attribute from the server and to
push appropriate rules for delivering the same.

Attribute notification: This is a server initiated ATT com-
mand that notifies subscribed client(s) that an attribute value
has changed. In our model, a server sends only one notification
packet for an attribute value as it connects to only one BLESS
node acting as a central device’s client. Upon receiving a
notification packet from the peripheral device, BLESS applies
forward action on the packet to each subscribing client in the
Notify-Set based on rules pushed by the controller.

VI. EVALUATION

For evaluation we deploy the BLESS prototype on Rasp-
berry Pi 3 with four Bluetooth 4.0 USB dongles attached
to it. One dongle is designated to connect with commercial
peripheral devices, and the rest three dongles are used to
connect with three individual Android-based central devices.2

As peripheral devices, we use August door lock, Eve Energy
power socket, Avea LED bulb, and Withings Pulse Ox. Our
proof-of-concept prototype and testbed are built for checking
the feasibility of BLESS and testing its functionality. The
evaluation is not meant for real-life stress testing with a
large number of devices under high traffic condition. We first
present the implementation of several use cases, followed by
performance tests to show the overhead introduced by BLESS.

2Using one dongle per central is because Bluetooth 4.0 allows one pe-
ripheral to connect with only one central. Bluetooth 4.1 and later supports
one peripheral to connect with multiple centrals, in which case a single USB
dongle would be enough to connect with multiple centrals.
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Fig. 4: The hospital scenario with BLESS. Dotted rectangles
depict network slices among different groups of BLE devices
and services (represented in solid rectangles).

A. Service Automation using BLESS

To illustrate the inner workings of BLESS, we implement
three use-case scenarios of service slicing, service enrichment
and service composition described in Section II. Instead of
using the actual devices from the example scenarios, we imple-
ment the scenarios using the aforementioned commercial off-
the-shelf BLE devices with similar interaction among them.

1) Service Slicing: For a service slicing use case, we
consider the hospital scenario described in Section II, where
different, potentially overlapping, GATT-level service slices
are enforced between central devices operated by hospital
personnel and peripheral devices carried by patients. Fig. 4
describes this scenario with central and peripheral devices
connected to two different BLESS nodes (B1 and B2). Also
shown are three GATT services (battery, heart rate and body
temperature monitors) offered by the peripheral devices, and
several slices (shown in dotted rectangles) created to police
access to these services by central devices. As evident, slices
can be independent (e.g., Blue and Red) or overlapping at
various services (e.g., Red and Green). BLESS ensures that
each slice is created and maintained in isolation without
interrupting any ongoing services. Fig. 5 shows a snippet of
rules installed in B2 to implement the administrator’s service
slice (blue slice in Fig. 4) which is composed of his central
device A and the battery services of all the peripheral devices
H1, H2, and T2. In this slice, BLESS must ensure not only
that the device A can connect to all remote peripheral devices
(H2 and T2) at the link layer even when A is out of their
broadcasting range (Rule1), but also that A can only access
their battery status (Rule1 and Rule4). Any attempt to access
non-battery related information on the peripheral devices will
be blocked with an error response (Rule2 and Rule3).

2) Service Enrichment: In Fig. 6(a), we have a service
slice in which a heart-rate monitoring device (H) periodi-
cally notifies BPM (heart-beat per minute) of a patient to

Rule1:table=0,SID=A,DID=H2,in_port=6,att_opcode=READ_REQ,
att_rrq_handle=BATTERY, actions=output:8

Rule2:table=0,SID=A,DID=H2,in_port=6,att_opcode=READ_REQ,
att_rrq_handle=HEART_RATE,
actions=remove_header:att_rrq,
add_header=att_err,resubmit(,1)

Rule3:table=1,SID=A,DID=H2,in_port=6,att_opcode=READ_REQ,
att_rrq_handle=HEART_RATE,
actions=set_field:0x05->att_length,
set_field:ERROR_RESPONSE->att_opcode,
set_field:READ_REQ->att_err_att_request_opcode,
set_field:HEART_RATE->att_err_att_handle_error,
set_field:READ_ERROR_CODE->att_err_att_error_code,
output:6

Rule4:table=0,SID=H1,DID=A,in_port=1,
att_opcode=READ_REPLY, actions=output:6

Fig. 5: Flow rules in B2 for implementing the administrative
personnel’s service slicing.

BLESSBLESS
21 3

BLESSBLESS
12 3

H PN

Fig. 6: (a) Service enrichment scenario. (b) Service composi-
tion scenario.

a monitoring app running at a nurse’s device (N) and a
physician’s device (P). In this slice, one would like to tailor
the frequency/condition of notifications to meet the monitoring
requirements by different hospital personnel. For example, the
physician is set to receive notifications only when the BPM is
over 111. Without touching the native monitoring app on N and
P, one can implement this notification policy within this slice
by instantiating device-specific rules in BLESS as shown in
Fig. 7. Rule1 selectively passes a matched notification packet
to either table 1 or 2 based on att_notify_value. In table 1
(att_notify_value>111), BLESS forwards the notification
to both N and P, whereas in table 2, the notification is sent to
N only. In a large-scale hospital environment which involves
many peripheral and central devices, notification policies can
be fully tailored and easily updated from the central controller
based on origin peripheral devices and target central devices.

3) Service Composition: In the service composition sce-
nario (Fig. 6(b)) described in Section II, the thermostat as a
central device cannot control both the AC and the dehumidifier.
In this scenario, one can instantiate rules in BLESS as shown

Rule1:table=0,in_port=1,att_opcode=NOTIFY,
att_notify_handle=BPM,
actions=comparison(att_notify_value,111,1,2)

Rule2:table=1,in_port=1,att_opcode=NOTIFY,
att_notify_handle=BPM, actions=output:2,3

Rule3:table=2,in_port=1,att_opcode=NOTIFY,
att_notify_handle=BPM, actions=output:2

Fig. 7: Flow rules for implementing the heart rate notification
service enrichment.



Rule1:table=0,in_port=1,att_opcode=WRITE_REQ,
att_wrq_handle=AC_STATUS,
att_wrq_att_value=ON,actions=output:2,goto_table:1

Rule2:table=0,in_port=2,actions=output:1
Rule3:table=0,in_port=3,actions=
Rule4:table=1,in_port=1,

actions=set_field:POWER_SOCKET_STATUS->att_wrq_handle,
set_field:OFF->att_wrq_att_value,output:3

Fig. 8: Flow rules for implementing the AC-dehumidifier
service composition.

in Fig. 8 to keep either the AC or the dehumidifier switched
on, but not both, to save energy at home. According to Rule1,
when a “turn-on” ATT write request is forwarded from the
thermostat to the AC, a copy of this request is sent to table 1 as
well, where it is modified to a “turn-off” ATT write request for
the smart power socket, and sent out by Rule4. Theses rules
implement a new service interaction whereby turning on the
AC automatically shuts down the dehumidifier. Similar rules
can be defined for turning off the AC.

B. Performance

We are particularly interested in the performance impact of
introducing BLESS in between peripheral and central devices.

With BLESS Without BLESS
CI (ms) Round-trip delay (ms) CI (ms) Round-trip delay (ms)

C↔B B↔P Read Read by type C↔P Read

10 10 15.1 16.88 10 12.13
30 10 30.12 31.08 30 30.6
50 10 50.1 50.6 50 50.08

100 10 101.3 102.5 100 101.1
100 20 101.35 102.9 100 101.1
100 30 101.79 102.8 100 101.1
100 50 102.85 103.9 100 101.1

TABLE I: Average round-trip delay of a request-response
packet pair between a central and a peripheral through BLESS
for different connection intervals.

1) User Perceived Delay: Connection Interval (CI) is the
key parameter of BLE link layer that influences the packet
round-trip delay on a connection between two devices [11].
It ranges from 7.5ms to 4.0s. BLESS maintains two such
connections: one between a central device and BLESS (C↔B),
and the other between BLESS and a peripheral device (B↔P).
While BLESS (as a central device) can control the CI for
(B↔P), the CI for (C↔B) is set by the central device, and is
not under BLESS’ control.

Table I shows end-to-end round trip delays for read re-
quest/response and read-by-type request/response (with seven
attributes) transactions, with and without BLESS, when the CI
values vary. For a direct connection between devices without
BLESS, CI of (C↔P) is set to the same as that of (C↔B)
for the above mentioned reason. Note that with BLESS in the
middle, juxtaposing the two CI values yields the same result,
and is not shown in Table I.

With BLESS in the middle, the overall round-trip delay
is influenced by the link layer connection with a relatively
higher CI (C↔B in the experiment). The read-by-type re-
quest/response transaction incurs more overhead compared to
the read request/response transaction as BLESS recirculates
the response packet multiple times in the pipeline, but the
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Fig. 9: (a) Packet processing delay of read-request-response
transaction in BLESS for different number of connected
peripheral/central devices. (b) Packet processing delay of
iterating a read by type response packet in BLESS for different
number of attributes.

additional delay is very marginal. Having BLESS in the middle
hardly lengthens the round-trip delay, compared to the direct
connection scenario. This trend is more prominent with higher
values of CI, which is more common in practice.

2) Processing Time within BLESS: We further investigate
the aforementioned experimental result by zooming in the
packet processing pipeline within BLESS. We instrument
BLESS to timestamp all ingress/egress packets and calculate
the time spent by a packet in BLESS. Fig. 9a and 9b show the
processing time incurred for read request/response and read-
by-type request/response transactions, respectively.

Fig. 9a shows that per-packet processing increases slightly
with load. The more interesting case is Fig. 9b which shows
that per-packet processing time in BLESS can vary depending
on the packet contents. When an ATT packet carries a list of
attributes, BLESS can apply rematch action to iterate through
the list. The number of iterations required to process such a
packet depends on the number of attribute values in the list.
Fig. 9b shows that the delay overhead increases marginally as
the number of attributes increases. Note that an ATT command
packet can have at most seven attributes in the list due to MTU
restriction. Comparing the first bar in Fig. 9a and the last bar
in Fig. 9b (the overhead of read-by-type command), one can
see that they differ by about 1ms, which is consistent with
Table I. We expect the overhead to be reduced further with
the availability of more efficient P4-to-OVS implementation.

VII. PRIOR WORK

There is a large body of work that proposes cloud-based
services for IoT devices, which requires every IoT transaction
to be exposed to the cloud (see [22] and references therein).
The cloud-based approach, however, cannot always satisfy
various device/application requirements for privacy, security,
scalability, QoS guarantee, etc. [1], [2]. On the other hand,
IPv6 over BLE [23] has been proposed for wider reachability,
but routing becomes far more expensive in a mesh topology,
and IP-multicasting for notification becomes inefficient due
to time-to-time sleep mode of BLE nodes [9], [8]. There are
local IP-based BLE service gateway solutions [11], [20], where
no standard protocol and/or API is defined for networking
different IoT devices; each vendor ends up defining its own



BLESS Gateway-based (e.g., Beetle [11],
IoTivity [20], DeviceHive [21])

Cloud-based (e.g., Azure IoT,
IBM Bluemix, OpenHAB, Ope-
nIoT) [22]

IPv6-based [23]

Description

SDN-based solution that cen-
trally monitors and controls the
BLE transactions in the data
plane between IoT devices

A service gateway that connects
to the IoT devices over BLE as
well as a remote service agent
over IP.

Every IoT device reports to
a cloud-hosted application (via
hub), which ultimately decides
the flow of device-to-device
transactions.

IoT devices are equipped with
IPv6 over BLE that widens
the reachability of BLE devices
over IP.

Policy control
In-network policy control on
BLE transactions, which remains
transparent to the devices.

Application-level policy control
which requires creating proxy or
virtualization of BLE devices.

Cloud-hosted application im-
poses policy on every device-
to-device transaction.

In-network policy control on
TCP/IP traffic.

APIs for
device to

device
transaction

Uses native BLE APIs, which re-
quires no modification in existing
BLE applications.

Requires modification of client
applications or the central de-
vice’s native BLE APIs, which
translate between the BLE proto-
col and the gateway protocol.

Requires special cloud based
APIs to support device-to-
device transactions.

Requires changes in native
BLE API implementation (e.g.,
BlueZ [24]).

Standardization
for

connectivity
management

No standardization is required.
The central controller uses Open-
Flow protocol to set up rules to
orchestrate the connectivity re-
quirements.

Needs special application level
or operating system support (i.e.,
SDK or APIs) with user’s in-
volvement for managing the con-
nectivity.

Requires standardization of a
new protocol between IoT hubs
and the cloud to manage the
connectivity.

No standardization is required,
but running BLE’s native ser-
vice layer (ATT/GATT) over
IPv6 introduces extra burden
and inefficiency for managing
the connectivity.

Application
scenarios

Applicable for real-time applica-
tions with low latency require-
ment. Multiple BLESS nodes
with centralize control capability
make this solution applicable for
large-scale deployment.

Suitable for rapid prototyping
in small scale environment (i.e,
home deployment), but ad-hoc
development at the gateway
makes it expensive to support
large scale deployment.

Applicable for large-scale data
collection or analytics applica-
tion, but not suitable for real-
time applications using com-
mercial cloud. However, open
source cloud solution with on-
premise deployment can pro-
vide low-latency.

TCP/IP-based solutions are not
suitable as BLE’s very small
MTU size degrades protocol
performance and introduces ex-
tra overhead on the resource-
contained low power devices.

TABLE II: Qualitative comparison between different IoT solutions and BLESS.

methodology which makes interworking almost impossible.
There are also efforts to develop an open source generic
IoT platform that mainly focuses on supporting interoper-
ability by abstracting connectivity and management of the
things [20], [21], [25]. Table II summarizes qualitative compar-
ison among different IoT solutions (i.e., proxy-based, gateway-
based, cloud-based, IPv6-based) and BLESS.

Moreover, most of the IoT cloud-based or local gateway-
based platform focuses on rapid application prototyping
and deployment. These solution uses static (re-)configuration
which makes dynamic orchestration of services and devices
challenging [26]. Unlike the previous work, BLESS focuses on
re-configurability, through the use of dynamic orchestration of
services and devices. Thus BLESS ultimately provides better
application configuration and governance.

VIII. CONCLUDING REMARKS

We make a case for SDN-based in-network packet monitor-
ing and control for BLE transactions. To this end, we address
the feasibility and realization of the data plane by building a
switch that can transparently reside in between communicating
BLE devices. The switch is built using OVS and P4 platform,
and can benefit from advances made in each of these active
research fields. We leave the details of the control plane
realization, flow rule optimization, and the impact of BLESS
in BLE security as a future work.
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