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Abstract—Tracking energy consumption for individual operating
machines (e.g., home appliance) is a prerequisite for making energy
conservation and management efficient. In order to meet the
requirement for monitoring home energy consumption, several
industries and researchers came up with different solutions.
Unfortunately, all these solutions require invasive and expensive
installation of sensor devices. Furthermore, many of these solutions
can’t measure the energy consumption of individual machines. In
this paper, we propose and evaluate the feasibility of using smart
phones in machines’s energy monitoring system. We call our system
EnergySniffer in which it exploits various sensors, such as magnetic
sensor, light, microphone, temperature, camera, WiFi, in smart
phones to build a multi sensing framework. This framework is used
to build a unique fingerprint profile for each individual machine.
As a proof of concept, we develop a simple sensing framework
prototype that utilizes only the microphone sensor on the phone.
We call this framework a sound sensing framework. Experimental
evaluation on sound sensing framework demonstrate the feasibility
of continuously identifying and monitoring individual machine in
real-time.

I. INTRODUCTION

Home energy consumption is a great concern to our current
time. Several studies [2], [3] have shown that detailed energy
monitoring system at houses can built awareness among
householders. Researchers and industries have developed such
real time energy monitoring systems for household users [4], [5],
[6], [7], [8], [9], [10]. However, these systems require additional
setup cost and have their own drawbacks. For example devices
like TED [6] monitors the whole house energy consumption
but does not provide energy consumption for each individual
machine. On the other hand, Watts Up [7] can provide energy
consumption for each machine but it requires additional inline
installation between AC plug and outlets. In this paper, we
propose a simple and flexible energy monitoring system using
smart phones. We call our system EnergySniffer in which
it exploits various sensors, such as magnetic sensor, light,
microphone, temperature, camera, WiFi, in smart phones to
detect and monitor operating machines in its vicinity. In the
rest of this paper, we use the term ”machine” to refer to any
type of machine at home including home appliances, computing
machines, non-computing machines etc. The advantages of
EnergySniffer system can be summarized as follow: First, it
monitors energy consumption for each individual machine.
Second, it has very low overhead and also no new hardware is
needed to install or maintain. Third, very flexible in updating
software and deploying new services using the application

updating feature of the smart phones’ application markets.
Using the sensors in smart phones to monitor the energy

consumption by machines is an eccentric way to approach the
problem. Our final objective is to fuse the data from multiple
sensors in phone to build a multi sensing framework to generate
a unique fingerprint profile for each machine. Later, we apply a
machine learning method using fingerprint profiles to recognize
and monitor operating machines. In addition to that, this system
will also communicate with the Energy Profile of the identified
machine to finally calculate the actual energy consumption.

In this paper, we develop a simple sensing framework
prototype, called sound sensing framework that utilizes only
the microphone sensor of the smart phone. As an initial step
of the sound sensing framework, we collect a raw sound data
for each individual machine. This sound data is used to build
a sound profile to detect and identify the machine later. In
our experiments, we evaluate our sound sensing framework in
detecting and identifying operating machines in real time. We
conclude with a discussion on several implementation challenges
as well as the current on going work to efficiently monitor home
energy consumption.

We summarize the contributions of this paper as follow:
• Introduce a cheap and flexible system based on multi

sensing framework to monitor energy consumption of each
individual machine.

• Implement a sound sensing framework in smart phone as
a prototype that uses the microphone sensor of the phone
to detect the running machines in real-time.

• Evaluate our prototype sound sensing framework in real
environments, which shows the feasibility of our system.

The rest of the paper is organized as follows. In section 2, we
explain the main components of our ”EnergySniffer” system.
In the following section, we describe the implementation. We
describe the experimental evaluation of the sound sensing
framework in section 4. In section 5, we describe limitations
and ongoing work with some possible applications. Finally, we
describe the related works and conclude in section 6 and section
7 respectively.

II. ”ENERGY SNIFFER” SYSTEM

In this section, we describe the two main components of the
EnergySniffer System. The first component is the Energy Profile
component that consists of a pre-installed database containing
the energy consumption profiles of the individual machines. User
can create a new energy profile for a machine that does not exists978-1-4577-1379-8/12/$26.00 c© 2012 IEEE



in the Energy Profile database. The second is the multi Sensing
Framework that consists of both Offline Learning and Online
Detection phases. Offline Learning is a collection of modules
to build a unique fingerprint profile for each individual machine
through offline training. The system, through a machine learning
algorithm, will utilize the pre-built fingerprint profiles to detect
and identify the current operating machines within the Online
Detection phase. Once the system detect a machine, it uses the
corresponding energy profile from the Energy Profile database
to track the energy consumption of this machine. Figure 1 shows
the workflow of the EnergySniffer system. In the figure 1, Multi
Sensing Framework consists of offline learning system, online
detection system and the fingerprint profiles of the machines.
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Fig. 1. Workflow of EnergySniffer System
A. Energy Profile

Energy Profile is a database of list of machines with their
corresponding energy consumption profiles. Since this list is
expected to be large when we have many machines, we chose to
maintain the energy profile database as a web service instead of
storing it locally in phone’s storage. When a phone detect and
identify a machine, it contacts the web services and downloads
the corresponding energy profile of the machine. Furthermore,
user has the option to upload a new machine profile to the
Energy Profile database. Initially, this database is built from
the information provided by the manufacturer. For example, in
our experiments we use a microwave oven, which has a energy
profile that is collected from the corresponding manufacturer
web site [11].

<microwave oven>
<brand>Emerson< / b r and>
<model number>MW8784< / model number>
<c a p a c i t y u n i t =” c u b i c f e e t ”>0 . 7< / oven>
. . .
<e ne rg y consumpt ion =”W/ hr ”>1050< / en e r g y>
< / microwave oven>

In the Online Detection phase, once the phone matches
the collected sensing data with the fingerprint profile of a
machine, then its corresponding energy profile from Energy
profile database is used to track the energy consumption of
the machine. Note that, a machine might have different modes
of operation in which each mode of operation will have its
corresponding energy consumption profile.

B. Multi Sensing Framework

Multi Sensing Framework has two main components: the
offline learning component that is responsible to build the
fingerprint profile for each individual machine from the sensing
data, the online detection component that uses these fingerprint
profiles to detect and monitor operating machines. IIn building
the fingerprint profiles, the characteristics of each machine (e.g.,
sound characteristics, light characteristics, etc.) are collected
and analyzed to identify the unique features and corresponding
sensors that could be used to detect and identify the machine.
Then, for each machine, the sensing profile is built from the
collected sensing data of the identified sensors. These sensing
data in collective way represent the features that construct the
sensing profile of the machine. For example, major electrical
machines at our home show some distinguish characteristics.
Such observations help us to utilize the sensors to identify the
machine. In other words, the multi sensing framework builds
a fingerprint profile for each machine using different sensors
reading. Sensors such as RF, magnetic, light sensor, temperature,
sound etc. can be utilized and fused together to detect an
operating machine [12], [10], [9]. In a fingerprint, some sensor
data might not be relevant for some machines. For example,
vacuum machine has no light sensing data. On the other hand,
some machines might have multiple sensing types in building
their profiles. For example, microwave oven have both sound
and radio frequency data that could be sensed and utilized in
detecting it. Fusing the multiple sensing data of each machine
reduces the ambiguity of identifying the operating machine
[13]. Moreover, multiple sensing data of a machine can also
be utilized to identify the multiple operational modes of that
machine [9].

In summary, building a multi sensing framework has several
challenges. First, while creating a fingerprint profile for a
machine from the sensing data, we need to study, how the
sensing data behaves under different operational modes of the
machine. Inferring from that, we need to select the sensing
data that are the most sensitive to the characteristics of the
machine. Second, how to fuse the selected sensing data to build
the profile of a machine for better detection process, is another
challenge. Finally, most of the sensing data are highly prone
to the environment noise, which make it hard to build a robust
fingerprint profile of a machine.

III. SOUND SENSING FRAMEWORK

In this section, we discuss the Sound sensing framework
that utilizes only the microphone sensor of the smart phone.
In this framework, initially we build a sound profile for each
individual machine, then we apply a offline training to build
the fingerprint profile of the machine. The fingerprint profile
represents an acoustic model for each individual machine that is
build from the collected audio data from microphone sensor of



the smart phone. For creating these models, initially, the system
will collect the raw audio samples at lower sampling rate for
a fixed period of time. The feature extraction subcomponent
of the system uses this sampling data to extract the relevant
features. In the next step, collected features are used in training
for building a probabilistic model for each machine. In general,
this model represents the fingerprint profile of the machine. In
this implementation, we use a supervised learning technique for
building the acoustic models.

A. Acoustic Feature Extraction

This component extracts the acoustic features from the
raw audio data through a feature extraction procedure. This
feature extraction procedure has three goals. First, the collected
features should reflect the distinctive acoustic nature among the
machines. Second, the effect of any transient background noise
on the features should be minimized. Finally, the contextual
orientation and the position of the smart phone needs to be
considered while extracting these features. It is well known that
most of the machines at home contains a motor that shows a
distinctive characteristic between the frequency band 0Hz to
1KHz [10]. However, for our feature collection procedure we
have considered the frequency range from 0Hz to 5500Hz,
which is half of the sampling rate. In speech and audio
processing, MFCC [14], [15] is the mostly used feature for
audio classification. Therefore, in our system we use the MFCC
features for models generation and classification.

Most of the machines have ambient sounds, which show
more consistent characteristic compared to human voice sound.
Therefore, in framing the sampling audio data, we use the larger
frame length compared to the usual frame length of 20ms-
40ms. We consider a fixed size of raw audio data as a Frame.
In feature extraction, we applied the Hamming window, Fast
Fourier Transform (FFT), triangular filter bank and Inverse FFT
(IFFT) consecutively over the collected raw audio data. In our
empirical experiments, we see that machines at home work in
the lower frequency range between 0Hz and 2000Hz. Moreover,
most of the machines show distinguish characteristic in lower
frequency range. Therefore, in designing the triangular filter
bank, we use more filters with high weight values at lower
frequency. Finally, we apply IFFT to filter bank output to get the
final features in cepstrum features, where cepstrum is the inverse
Fourier transform of the log-magnitude Fourier spectrum.

B. Model generation

In offline training phase, we use the extracted features from a
frame of raw sound data to generate the probabilistic model for
each machine. In model generation, we use a supervised machine
learning algorithm to generate the multivariate Gaussian model
for each machine. Each model is represented by a multivariate
Gaussian function N (~x,~µ,Σ) with mean ~µ and variance Σ
parameters. For simplicity, Σ is considered as a symmetric
matrix. In other words, we assume that all the acoustic features
of a frame are independent. However, ~µ and Σ are calculated
from the collected features using the Maximum-Likelihood(ML)
algorithm as follow:

~µML =
1

N

N∑
i=1

xi

Σ =
1

1−N

N∑
i=1

(xi − ~µML)2

Usually, a machine has several modes of operation. For
instance, In our experimental example, the washing machine has
multiple states of operation such as water-filling and washing
states. Obviously, each machine consumes different energy for
each different operational mode [9]. Fortunately, each operation
mode has its own unique sound. In order to reflect the different
acoustic natures of a machine corresponding to the different
operational modes, we use two types of probabilistic models for
each machine. One type represents the acoustic model of the
machine , while the other type represents the acoustic model of
an operational mode of the machine.

In this paper, we refer to the first model as the state
independent model. The state independent model is built from
the collected features of all the operating modes of the machine.
The other model is called the state dependent model. The state
dependent model is generated from the collected features of a
particular operating mode of the machine. We use these two
model types in our machine recognition component described
next.

C. Machine Recognition

In machine recognition, we use the collected features, ~f
(feature vector) from a frame of testing sound data to calculate
the likelihood values from the Multivariate Gaussian Model of
each machine. We label a frame to the machine, which shows
maximum likelihood values for the feature vector of that frame
as follows,

F l = arg max
m
N (~f, ~µm,Σm). (1)

where F l is the frame label, ~f is the feature vector of a frame
and ~µm,Σm are the mean and variance of the Multivariate
Gaussian Model of the machine m. Finally, we label the window,
which consists of multiple number of sequential non-overlapping
frames. The maximum occurrence of certain frame’s label in a
window is the label for a window. In other words, in a window,
if M is the machine that was detected maximum number of
times as a frame label, then that window will be labeled as M .

w = [F1, F2, ...., Fn]

wl = arg max
m

K(F l = m)

where w is a window consists of n sequential frames from
F1 to Fn. wl is the label of the window and K(F l = m) is a
function that provides the number of frame that is labeled by
machine m.

Within the recognition phase, our approach initially identifies
the machine using state independent model of the machine. After
identifying the machine, we use the state dependent models of
a machine to recognize the different operational modes of that
machine. In the experimental section in this paper, we evaluate
our approach in regard of identifying multiple operation mode
of a machine.



D. Implementation

In our prototype implementation, we implement the sound
sensing framework on Android phones. The implemented
framework prototype is responsible to generate the acoustic
models for the different machines, as well as recognizing the
operating machines from the recorded raw audio data. Our
prototype implementation is about 900 lines of Java code using
in android development platform. Furthermore, we deploy our
prototype in Nexus S phones, which has 1GHz A8 processor
with 16GB flash memory. In our prototype, we implement
both the feature extraction and the machine recognition in the
Android platform. The complete prototype application is 72Kb
in binaries.

In the feature extraction component, we implement the Fast
Fourier Transform (FFT), Hamming window, Inverse FFT and
weighted filter bank on the Android phones. We record the raw
data using the 11025Hz sampling rate with 8 bit PCM encoding
through the Android phone audio SDK API [16]. In forward
FFT, we use 256 frequency bins while we use 32 frequency
bins for the reverse FFT. Moreover, we consider 1024 samples
(=92-93ms)of raw sound data as a Frame and 10 Frames as
a Window (=1s). In case of a weighted filter bank, we use
20 linear filters in frequency band of 0 - 1000 Hz and 12
logarithmic filter of 1000-5500Hz frequency band. The reason
behind this large number of filters at lower frequency is that,
most of the machines show distinctive characteristic at lower
frequency. In implementation, we continuously collected PCM
formatted audio data from the microphone and put the data in a
buffer of 1024 samples (1 frame). After that, a thread is called
to make further signal processing on the buffered data. Finally
we get cepstrum features from sampling raw sound data. These
features are used for further classification.

In generating the model, we collected 2 seconds of data
(features) and then apply Maximum-Likelihood algorithm to
generate Multivariate Gaussian Distribution model for the
machine. In the smart phone implementation, we assume that
each machine has one mode. Even if a machine has multiple
operational modes, we label each operational mode as a
different machine. Moreover, during experiments, we build the
probabilistic model of the machines in different days than the
testing day, in order to make time invariant evaluation.

In the prototype implementation, we use equal prior bayesian
classifier for classifying and labeling each frame. After labeling
the frames, we label each window based on the maximum
occurred label in he frames of the window. We also measure the
power consumption of our prototype application and compare it
with the case when the phone is idle and not detecting machines.
In the figure 2, we see our prototype application consumes on
avg. 1200mW of energy that is less then the average energy
consumption while receiving WiFi data(1700mW). However,
most of the energy consumption of our prototype application
take places due to the continuous high computation of FFT and
IFFT. Such energy consumption can be reduced by increasing
the time window size of FFT. As a future work we like to
focus on how to reduce the energy consumption of our prototype
application.

Fig. 2. Mosoon Power monitoring output while our prototype application is
operating and when the mobile is idle.
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Fig. 3. Circle 1, 2, 3 shows the position of a microwave, a fan and a vacuum
cleaner respectively at our lab space. Square 1, 2, 3, 4 and 5 show the position
where we have detected and identified the current operating machine using our
prototype application.

IV. EXPERIMENTS AND EVALUATION

In this section, we describe three sets of experiments to
evaluate the feasibility of identifying and tracking the operating
of machines using our implementation of the sound sensing
framework that is described in the previous section. In the first
set of experiments, we evaluate how correctly we can identify
the frames of a window. In the second set, we conduct a real-time
evaluation of our implemented system by continuously tracking
the machine operation for a certain period of time. Finally, in the
third set of experiments, we evaluate the accuracy in detecting
the different operational modes of an operating machine.

First Set of Experiments: In this experiment, we build
a unique fingerprint profile for three different machines; a
microwave, a table fan and a vacuum cleaner. In building
these fingerprint profiles (i.e, acoustic models), we collected the
acoustic raw data in a close vicinity to the machine. Figure
3 shows the layout of our lab space and also the position of
each machine in the lab. As shown, our lab consists of two
adjacent rooms each of size 20 feet by 10 feet. In the experiment,
we run a single machine at a time and use our implemented
system in Nexus S phone to detect and identify the operating
machine at five different locations for two orientation(horizontal
and vertical) of the phone. During running our experiments,
we keep the door between the two rooms of our lab open.
In this set of experiments, we collect at each testing position
using our prototype application a number of acoustic frames
corresponding to the operating machine in a 2 sec window.
For each frame, our application labels this frame with the
corresponding detected machine. Table I shows the percentage
of the detection accuracy at each position for each different
machine. The shown percentages are averaged over four different
runs for the four different orientations of the phone.

In table I, ”none” is a sound profile that we use when
there is no operating machine. From table I we see that, while



Machine Position microwave fan vacuum none
1 64.06% 23.43% 3.12% 9.37%
2 71.87% 9.37% 0.00% 18.75%

microwave oven 3 65.62% 28.12% 0.00% 6.25%
4 60.93% 20.31% 0.00% 18.75%
5 53.12% 12.5% 0.00% 34.37%
1 32.81% 67.19% 0.00% 0.00%
2 42.19% 54.68% 0.00% 3.12%

Fan 3 43.75% 56.25% 0.00% 0.00%
4 32.81% 57.81% 0.00% 9.37%
5 48.44% 29.69% 0.00% 21.87%
1 3.12% 0.00% 96.88% 0.00%
2 0.00% 0.00% 100.00% 0.00%

Vacuum 3 15.66% 0.00% 84.34% 0.00%
4 0.00% 0.00% 100.00% 0.00%
5 0.00% 0.00% 100.00% 0.00%

TABLE I
RESULT FROM FIRST EXPERIMENT.

the microwave machine is operating, our prototype application
manages to label most of the frames at all the five positions
correctly to the microwave machine. In case of the fan, our
system labels most of the corresponding frames correctly at
all the position except position 5. The distance from the fan
to position 5 is relatively larger than to the other positions.
Moreover, the wall between position 5 and the fan hinders
the sound of the fan. Therefore, creating multiple acoustic
fingerprints of a machine at multiple different distances will be
an interesting direction to explore. On the other hand, in case of
the vacuum cleaner is operating, our application identifies almost
all the frames correctly as shown in Table I. This is because the
sound intensity of the vacuum cleaner is relatively much higher
than the microwave and the fan.

Second Set of Experiments : In the setup of these
experiments, we use the same set of machines(microwave, fan
and vacuum cleaner). We use the same setup shown in Figure 3
with one exception in which we placed the Android phone on the
center of the table shown at the left of the west room. During this
experiment, we run our prototype application in Nexus S phone
for 105 minutes. The prototype application continuously senses
surrounding sound to identify any operating machine in real-
time and write down the label of the detected machine for each
window (1second) in a file. In this experiment, our application
consumes 15% of battery charges in 105 minutes.

Fig. 4. The recognized machines by our prototype and the actual operating
machines during the 25 min period

During the 105 minutes we run the microwave 4 times, the fan

3 times and the vacuum cleaner 2 times. In this setting, no two
operating machines overlap. Without loss of generality and for
visualization purpose, we show our experiments results for only
the time period between 25 minute and 50 minute in Figure 4.
In the figure, it is noticeable that some of the assigned labels are
incorrect and considered as outliers. For example, while the fan
is operating some of the labels are detected as microwave, and
vice versa. Fortunately, the experiments show that these outliers
happen in separately. Therefore, these outliers could be easily
removed using the smoothing techniques.

Third Set of Experiments: In this experimental setup, we use
two machines, the fan and a dishwasher. We use two operational
modes for the dishwasher ( water filling and washing) and
three modes for the fan (slow speed, medium speed and fast
speed). First, we create two state independent models for the
two machines, the fan and the dishwasher. Second, we create
three state dependent models for the three individual operational
modes of the fan, and the two state dependent models for the
two individual operational modes of the dishwasher. Finally,
we test our models with audio data collected at different days.
Initially, we identify the machine using the state independent
model, and after that the operational mode is recognized using
the state dependent model. Table II shows the number ofthe
labeled frames for the 100 frames collected for each operational
mode of the two machines.

Machine,Mode Fan1 Fan2 Fan3 DF DW
Fan slow speed (Fan1) 59 8 9 9 15
Fan medium speed (Fan2) 19 65 6 8 2
Fan fast speed(Fan3) 9 25 59 3 4
Dishwasher waterfilling (DF) 0 1 1 96 2
Dishwasher washing (DW) 3 0 4 4 89

TABLE II
CONFUSION MATRIX FOR IDENTIFYING DIFFERENT OPERATIONAL MODES

FOR THE MACHINES FAN AND DISHWASHER.

V. CHALLENGES AND FUTURE WORK

Our evaluation of detecting a single operating machine using
the sound sensing frame work is promising. However, the real
world problem of energy monitoring is far more challenging.
Some of the key challenges include the detection of multiple
operating machines at the same time, the accurate identification
schemes that is invariant to the environmental noise, and the
ability to detect the operating machines at different positions.
In order to make these challenges more addressable, we could
assume that we know the layout and the positions of the
machines as well as the smart phone.

Nowadays, a smart phone has potential number of sensors
that can have a lot of implications in our real life. However,
in our study we found that some sensors are limited in their
functionality. For example, we observed that the magnetic sensor
chip in Nexus S phone uses a very narrow bandwidth low
pass filter on the magnetic sensor reading. The reason behind
this behavior is that the magnetic sensor is less sensitive to
high frequency changing in the magnetic field. Moreover, the
microphone sensor at different devices and platforms shows
different sensitivity to the sound. In extending our work, we
like to understand more about the limitation, sensitivity and
characteristic of different types of sensors in different smart
phones in order to create a suitable fingerprint for the machines.



Some machines have several operational modes. In each
operational mode the machine consumes different amount of
energy [9]. It is a challenging task to detect the different
operational modes of a machine to have higher granularity
of energy consumptions. Intuitively, fusing different sensing
profiles of the machines help to identify different operational
modes of the machine. For example, in the case of a refrigerator
machine, when the compressor is on, its sound intensity gets
more prominent in comparison to the state when the compressor
is off [9]. In our implemented sound sensing framework we use
a naive probabilistic model to detect the machines. Our simple
probabilistic model increases the number of misclassification
with the increase in the number of machines. In future work, we
will investigate how to build a more accurate and sophisticate
model to detect and identify the machines more accurately.

In summary, our on going work on EnergySniffer project
is based on the above challenges and presumption include:
(1) extensive experiment on using smart phones location in
addition with layout information of the machines, to detect
multiple machines, (2) leveraging multiple smart phones with
wireless communication for further evaluation of our system, (3)
interfacing additional or external sensors with the smart phone
to create sophisticated fingerprints for the machine.

A. Possible Applications

The machines detection and monitoring has implication for
context-aware application, home automation, energy monitoring,
machine health monitoring, human activity detection, etc. For
example, a machine detection system can let the user know about
the machines that are operating in result user’s vicinity. The
system can warn the user if a machine is operating while it
should not be or vice versa. Moreover, the machine monitoring
system can also be applied to detect the machine’s malfunction
nature.

VI. RELATED WORKS

Non-Intrusive Load Monitoring(NILM) is one of the state
of art work in monitoring home energy consumption. NILM
is based on the idea that, each individual operating machine
generates a distinctive signature on the power distribution system
of the building. In [13], the authors use several additional
environmental sensors like light intensity, temperature, accel-
eration and sound level with the NILM system to enhance the
signature of the appliances. In their work, they relate the power
distribution event with the environmental sensing data to extract
the relevant appliance-related information from the sensors.
Similarly, in [4] a single point sensor is attached with the power
distribution system at home to detect any electric events. In
[9], ViridiScope is a power monitoring system for individual
appliances at home, which uses magnetic, acoustic and light
sensor to compute the consuming energy of the appliances. The
VirdiScope system collects the sensing reading by putting sensor
devices near to the appliance. On the other hand, EnergySniffer
system collect the sensing data using smart phone sensors.
In [12], the authors use radio frequency to identify non-wifi
devices like, microwave oven, video camera, cordless phone etc.
Inferring from the article [12], radio frequency can be a potential
way to identify a operating machine.

Microphone sensor of a smart phone is becoming popular
in current research activity [18][19][20]. In [18], SoundSense
provides a general purpose sound sensing framework for
resource limited smart phones. The main design goal of
SoundSense is to maintain a scalable architecture of the system
to detect large number of sound events for individual users. In
our sound sensing framework, we use the sound profile as a
fingerprint to detect the machines. In the article [19], the authors
use the acoustic background sound as a fingerprint to identify
a room or indoor location. SurroundSense [20] is an another
mobile application to detect the logical location of the user
using smart phone sensors. In [20], the authors use the sound
in addition with other sensor to create a fingerprint for different
logical location. In our best knowledge, EnergySniffer is the first
proposed smart phone sensing application for monitoring home
energy consumption. Some existing system like TinyEARS
[10] provides a individual machine level power consumption
details using acoustic signature of the machine. TinyEARS uses
audio sensors in each room to identify the currently operating
machines. In addition to that, it connects with the power meters
at home to detect the real-time changes in power usage to make
final correlation about which machine is using how much electric
energy. Although,TinyEARS provides a solution for monitoring
the energy consumption of the home appliances, but it need to
setup audio sensor in each room and to manage those sensors
to recognize the machines.

VII. CONCLUSIONS

In this paper, we propose the EnergySniffer system, that
uses the smart phones sensing capability to monitor the energy
consumption of the machines at home . The main purpose
of our system is to provide a simple and flexible home
energy monitoring system. Compared to other existing home
energy monitoring system, our system is simple to deploy and
easily adaptable to any new machine. Finally, we implement a
sound sensing framework in the smart phones as a prototype,
which only uses the microphone sensor to monitor the energy
consumption of the machines at home. Experimental evaluation
of our prototype system shows a good accuracy of detecting
and monitoring machines in real environment, which indicates
the potential of EnergySniffer system.
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