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Abstract—In wireless network edges, knowing the network flow
types and applications can enable various policy-driven network
managements (i.e. traffic offloading, BYOD, E2E QoS etc.).
However, applying network policies at wireless links between
the mobile devices and access points (APs) requires greater
visibility and control on generated traffic generated from mobile
devices. The recent advent of Software-Defined Networking
(SDN) could enable fine-grained network management at the
edge. However, in existing solutions, SDN uses external Deep-
Packet Inspection (DPI) engine that requires additional and
potentially heavy loaded computational resources to perform
the packet analysis. Moreover, mobile applications become more
dynamic (rapid install/update), diverse and complex (individual
applications generate multiple traffic types) in which scalability
and granularity requirements challenging current DPI solutions.
In addition, DPI is unreliable in classifying application’s en-
crypted packets. Therefore, in this paper we present the design
and the development of TrafficVision that extends the SDN’s layer
architecture to have fine-grained and real-time policy making at
wireless network edges. More specifically, we carefully extends
the SDN framework to develop tools that allow to have scalable,
efficient and flexible way to classify the network traffic flows
at fine-grained fashion using Machine-Learning (ML) based
technique. We evaluate our system using the performance of CPU
utilization, network overhead and network throughput metrics.
Finally, as a proof of concept, we develop a simple case study of
traffic management application that exploits TrafficVision.

Keywords-Traffic Classification; Software Defined Network;
Wireless Network;

I. INTRODUCTION

We are approaching a fundamental shift in the computa-

tional era as the penetration of smart devices (e.g., smart-

phones and tablets) is expected to reach 60% of the global

population in 2019 [33]. Given the advancements in micropro-

cessors and the development of new types of connected smart

devices with different capabilities such as smart watches, smart

glasses, smart meters, and connected vehicles, we are seeing

the next phase of the Internet populated with traffic primarily

from these devices forming what we call Internet of Things

(IoT). Cisco predicts the number of connected IoT devices to

reach 50 billion by 2020 [49], [16].

This explosion in number of smart devices, as well as var-

ious applications and services, results in a significant growth
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of network traffic as well as new traffic types. According

to Nielsens survey on mobile consumers [4], smart devices

become a significant source of data with multimedia streaming

(radio, music, video) dominating the data demand. There-

fore, number of researchers have proposed a new research

paradigm referred to as “edge computing”, where services

and applications runs at wireless network edges [8], [43] and

closer to client devices for low latency, high bandwidth, and

privacy [51], [52], [53]. In this paper, wireless network edges

are used to refer to both end devices (e.g., smartphone, tablets,

smart watch etc.) and wireless access devices1 (e.g., Wi-Fi

access points (APs), base stations, edge routers etc.).

With this context of pushing computation and storage re-

sources closer to client devices, it is essential to have flexible

and efficient network management at wireless network edges

to support complex network management and configuration

tasks such as end-to-end QoS for various network traffic,

different traffic engineering schemes with various policies,

and efficient load balancing [27], [45], [50], [15], [30]. Re-

cently, network community have embraced Software Defined

Networking (SDN) [24], [31] and Network Function Virtual-

ization (NFV) [42] in network core components as well as

access devices (i.e., cellular/Wi-Fi backhaul network) to ease

many aspect of “edge computing” such as resource allocation,

VM migration, traffic monitoring, application-aware control

and programmable interfaces [52], [46]. In addition, SDN

solution ease the implementation of network management on

switches/routers/APs by providing enough flexibility at access

devices.

The need for a smart network management supporting

various policies for wireless network edges traffic urges to

have light-weight, real-time fine-grained application and flow

type awareness. Existing SDN solutions for application and

flow-type awareness depends on the centralize deep packet

inspection (DPI) engine [6], [20], [5] for traffic classification.

Unfortunately, unlike edge data center machines, many devices

of the wireless network edges are not computationally pow-

erful for supporting DPI based solution [38], [6]. In addition,

now-a-days DPI techniques have limitations in providing fine

grained traffic classification due to payload encryption, privacy

issues, and tunneling transfer [54], [38]. Therefore, SDN based

1In the rest of this paper, we refer to them as access devices.
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centralized solutions of traffic awareness are inefficient and

impose significant overhead (e.g., delay) in order to control the

traffic of the wireless network edges [19]. Furthermore, these

centralize solutions are incapable to take into consideration the

end-device’s context for smarter network management.

In this paper, we present our design, development and

evaluation of a light weight and flexible application and flow-

type awareness framework, called TrafficVision, for wireless

network edges. TrafficVision is the first of its kind that provides

on-fly fine-grained visibility and control over the network

traffic generated by different applications and corresponding

various flow-types running on wireless network edges. In

TrafficVision, we push the SDN-like paradigm all the way to

end-devices, by extending and deploying Open vSwitch [3]

and OpenFlow protocol [34]) on both end devices and ac-
cess devices, to extract new flow statistics such as packet

sizes, directions, sequences, and timestamps, where a ‘flow’

is identified by 5-tuple fields. These extracted statistics are

passed to the control layer using our extended OpenFlow
protocol. In TrafficVision, we develop a network service in

the control layer, TV Engine that provides scalable, efficient

and real-time solutions for classifying the network traffic flows

based on Machine-Learning (ML) techniques. TV Engine uses

new features that extracts high-order frequency and temporal

information from the packet sizes and arrival timestamps,

improving the flow-type detection accuracies from 75-89%

(using the state-of-the-art [35], [47], [11]) to 85-98%. TV
Engine is also the core network service that provides a set

of API to the upper Application layer in order to develop

sophisticated network management applications. We also im-

plemented TrafficVision in real test-bed in order to evaluate

the efficiency and the overhead of the framework. Finally,

as a proof of concept, we develop two case studies of our

TrafficVision that allow us to automatically apply simple traffic

management policies on the wireless network edges.

II. BACKGROUND AND RELATED WORK

SDN has three layers network architecture; data layer,

control layer, and application layer. In SDN, control layer

is the core of the entire network system that maintains a

global view of the network for network application layer,

and fully controls the behavior of the network devices (e.g.,

router, switches, Wi-Fi AP etc.) thru data layer. In SDN data

layer, Open vSwitch [3] (OVS) is a multilayer OpenFlow [34]

supported software virtual switch that runs in the network

devices. Note that OVS has both user-space and kernel-space

components. The kernel space component is called Datapath.

SDN data layer (i.e. OpenFlow switches) and control
layer only analyze Layers 2-4 packet header fields, SDN

cannot recognize packet’s application or flow type information.

Note that traditional schemes that use port number and IP

address for application/flow classification is not reliable in

many cases since now-a-days applications start to use non

pre-defined or dynamic port numbers [55], [14]. Therefore,

existing applications/flow identification schemes require direct

user/application inputs [27], [15], [18] or custom integration

with application servers [45]

Although solutions using Deep Packet Inspection (DPI) can

be more accurate, they incur high computation cost and lim-

itation in differentiating between the various type of network

flows generated from the same applications[40]. Moreover,

DPI tools require complex reverse engineering or manual

process of building or updating the packet signatures for new

or updated mobile applications. Therefore, the exponential

growth in diverse mobile applications and the requirement of

fine-grained application detection makes DPI-based solution

impractical. Moreover, DPI schemes fail to classify encrypted

packets. As more mobile applications are using encrypted

content and data, more concerns are being raised on the

future of Deep Packet Inspection [20], [5]. To overcome

this issue, current DPI schemes uses heuristic classification

techniques for encrypted traffic, which is mostly unreliable

and slow. Despite such difficulties, DPI is a popular solution

with the SDN framework. In many commercial solutions, DPI

is deployed with the SDN control layer that is referred as DPI

engine. However, several earlier studies [9], [23], [38], [54]

have already claimed that DPI engines are computationally

expensive, which make such DPI based solution inapplicable

in wireless edges.

Machine Learning (ML)-based approaches [26], [48], [39],

[35], [10], [17], [54], [38], [37], have much lower computa-

tional cost than DPI-based solutions [48], and can correctly

identify encrypted traffic in many scenarios. There are wide

range of work on ML based traffic classification in the past, for

example [25], [28], [29]. However, ML approaches have so far

been restricted to traditional internet applications with coarse-

grained classifications such as web, P2P and VoIP [26]. Also,

recent works in mobile application detection [13], [32], [44]

have only targeted coarse-grained application classification

such as p2p, email, web browsing, and game application.

Therefore, existing coarse-grained solutions can not differen-

tiate between video flows generated by different multimedia

applications. In fact, this deep level of traffic awareness is

crucial for delivering an optimal QoE for end users. For

example, Netflix and Livestream are two applications that

generate similar video traffic as both use the same streaming

technology, HTTP adaptive streaming over TCP. Since Netflix

app comes with larger streaming buffer, as it is designed for

on-demand videos, it is more robust to the fluctuation in the

bandwidth than Livestream. On the other hand, Livestream app

is more subject to playback stalls and instability in the viewing

quality even with short term drop in the available bandwidth.

Therefore, when these two applications start competing over

the bandwidth, it will be more efficient to assign more network

resources or priority to the video streaming flow generated

by Livestream than Netfilx. However, existing coarse-grained

application aware solutions are unable to differentiate the

video streaming flows of Netflix and Livestream. Therefore,

they can not apply network resource policies for addressing

the competition over the bandwidth, which often results in

delivering unsatisfactory level of QoE.
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Fig. 1: High-level system architecture of TrafficVision within

SDN framework.

Unlike traditional applications, mobile applications (e.g.,

facebook, skype, tango, fringe etc.) often generate various

types of flows (e.g., video chat, voice chat, video stream, etc.).

For example, Skype application can do voice, video, screen

sharing, file sharing, and Instant Messaging (IM) flows as

well as the background traffic for signaling, analytics, adver-

tisement, etc. Therefore, for addressing mobile applications

we require fine-grained mobile traffic identification, where

we need to identify both the application name (i.e., youtube,

vimeo, skype etc.) and the flow types (i.e., video stream, audio

stream, video chat etc.)

In [40], researchers have proposed SDN solution that uses

Machine Learning (ML) technique to classify mobile appli-

cation’s traffic. However, the proposed schemes are coarse-

grained and incapable of providing fine-grained application

name and flow-type classification. Note that, different flow

types of different applications have different network loads,

QoS requirements, security/resource policies, etc. Thus, it is

very critical to be able to accurately and efficiently recognize

individual mobile applications and its various traffic flows in

real-time. In TrafficVision, for the first time, we propose to

extend and use OpenFlow [34] protocol with Open vSwitch

(OVS) [3] to collecting flow level features for traffic classifi-

cation. Note that OpenFlow provides flexible network control

and fine-grained network monitoring capability. Previously,

researchers have used Netflow [22] for collecting flow level

features for real-time traffic classification[12], [23], [41].

III. TRAFFICVISION SYSTEM OVERVIEW

Figure 1 shows the overall architecture of TrafficVision,

where at the bottom we have the data layer that consists of

end devices and access devices. In TrafficVision, these devices

runs Open vSwitch that, unlike the conventional routing table,

maintains a flow table to make forwarding decision when a

packet arrives at the switch. A flow table consists of flow-

entries with an action associated with the flow. In addition,

existing flow table maintains entries of simple statistic about

each flow-entry, such as total byte count and total packet count.

In TrafficVision, we extend Open VSwitch (OVS) to collect

additional statistic for each flow table entry, such as the packet

sizes and the packet arrival timestamps of recently receiving

packets. We also extended OpenFlow protocol to allow the

OVS to communicate the additional flow statistics of packet

sizes and packet arrival timestamps with the control layer. In

section IV, we describe more details about the extension of

the OVS and OpenFlow protocol.

In TrafficVision, at control Layer, we develop (section V-C)

and evaluate (section VI) the network service component,

TrafficVision Engine (TV Engine), which is the core part of

our traffic-aware framework for the network edge. TV Engine
uses the extended OpenFlow protocol to collect the additional

statistics of the packet sizes and the packet arrival timestamps

information from the OVS periodically. Furthermore, TV En-
gine aggregates the additional statistics extracted from the

OVS and keeps a local record of the packet arrival timestamps

and the packet sizes information for each flow. It also makes

sure no packet is counted twice in record collection. Then,

TV Engine extracts features from the collected record of

packet arrival timestamps and packet sizes over the recent time

window duration(e.g. window size 2000ms ). All records of

packet sizes and packet arrival timestamps before the time

window are removed. Finally, TV Engine uses the extracted

features to identify the application and the flow type using

classifier; which is trained on the collected ground truth

data. Section V-A describes more details about extracting the

features and building the classifier, and section V-C describes

more details about identifying the applications and the flow

types.

TV Engine provides on-fly information about active appli-

cations and flow types to the upper Application Layer using

specified API (Figure 1). We use a standard event model

for implementing the API, where number of event listener

objects (i.e. control applications) keep listening to all kind

of events (i.e. Identification of different types of traffic or

application flows) from the event source object of the TV
Engine. In developing a ”network management” service, the

service needs to bind to these event listener object to get notify

about identifying flow of certain type/application. There are

number of popular ”network management” services such as

policy enforcement and service differentiation, which leverage

the traffic-aware and application-aware flow information to

apply proper action commands (e.g. packet dropping, traffic

throttling, modifying QoS etc.) on different network flows.

Typically ”network management” send the action commands

to the control layer, which is later converted to the flow rules

and forwarded to the appropriate network devices through

OpenFlow protocol. In section VII, we develop two prototypes

of ”network management” services, using our TrafficVision
framework at wireless network edges.
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IV. TRAFFICVISION DATA LAYER: EXTENDING

OPENFLOW SWITCH

In extending the TrafficVision data layer, we add two new

statistics (packet sizes and packet arrival timestamps) to collect

from the OVS per flow. Note that, OVS has two forwarding

components, one at the kernel space (datapath) that is the

fast path, and another at the user space (ovs-vswitchd)

that is the slow path. The fast path maintains a ”cache” of

the flow entries (i.e. called micro-flow) in the hash-table that

recently has been observed by the datapath. Therefore,

when a packet is first received at the fast path, we look for

corresponding entries at the hash-table. If the packet’s header

matches with a flow entry in hash, the packet is forwarded

according to the action of the matched flow entry. Otherwise,

the packet is sent to the user space (i.e upcall) for the slow
path forwarding. In slow path, once the packet is delivered to

the user space, its header is matched with ”flow table” entries

to make the forwarding decision, and then send it to the fast
path. Then, the fast path forwards the packet according to slow
path decision, and adds a new hash entry corresponding to the

matching flow entry of the packet.

In fast path, when a packet of a flow matches with a

micro-flow entry in hash-table, we update the statistics of

sw_flow structure with the new packet size and the packet

arrival timestamp information in function ovs_flow_used.

Note that we added two arrays of 80 entries to sw_flow
structure to store packet arrival timestamps (arrival_time)

and packet sizes (packet_size) respectively. We chose the

array size to be 80 entries since this is the maximum amount of

information (total packet count, total byte count, last 80 packet

sizes and packet arrival timestamps) can be transferred in

one packet using OpenFlow protocol. In fast path, sw_flow
structure keeps record of packet sizes and arrival timestamps

since the entry is created in the hash-table. The two arrays

are maintained in queue form, where the oldest element is

removed when the queue is full. Now, if an entry gets removed,

for not recently receiving any packets correspond to that flow

entry or any periodic request is sent from the user-space,

the two arrays get copied from the sw_flow structure to

ovs_flow_stats structure in along with the packet and

byte count statistics. Once statistics are copied, values of

sw_flow structure get reseted. Later, ovs_flow_stats
structure is sent to the user space to get merged with other

subfacet, facet, rule_dpif, and rule structures for

updating the flow table statistics.

V. TRAFFICVISION CONTROL LAYER: TV Engine

In TrafficVision control layer, we develop a network service,

TV Engine, which has three major tasks: (1) Collecting,

storing and extracting higher-order flow statistics and temporal

features from packet sizes and packet arrival timestamps. (2)

Building a classifier from the collected ground-truth training

data. (3) Finally, applying the classifier to identify application

and flow types. The TV Engine is also the core network service

that provide API to the upper application layer for running
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Fig. 2: TV Engine workflow.

policies to control applications in the network. Figure 2 shows

an overview of TV Engine.

A. Flow Feature Extraction

Any network flow has two directions of packet flows,

incoming and outgoing, with respect to the device. We merge

the packets from both directions while maintaining the relative

order to extract two sets of flow features for each flow.

The first set of features corresponds to the signaling portion

of the flow that is consisting of the first ‘N’ packet sizes as well

as server port, server IP, protocol information. These packets

typically correspond to session initialization and signaling, and

are unique to each application. For example, the sizes of the

first 11 packets of Twitter flows are all unique compared to

flows of other applications. There could be several unique

signatures corresponding to a given application. Hence, we use

these features to identify the application corresponding to the

flow. However, existing in-network measurement APIs (e.g.,

OpenFlow protocol, sFlow) do not provide packet size & time

information ‘per-flow’. Thus, previous ML-based solutions

have to use software or hardware packet capture tools (e.g.,

pcap). However, this incurs unnecessary overhead for traffic

mirroring, capturing and flow processing; and also inadequate

for real-time in-switch/AP processing. In this paper, we extend

Open vSwitch and OpenFlow statistic APIs to provide per-

flow packet size (and arrival timestamp, for the second set)

with only marginal memory overhead to TrafficVision.

The second set of features corresponds to the non-signaling

(data) portion of the flow, consisting of packet sizes and

inter-packet times (IPT) observed after the first N packets.

Most existing approaches extract flow statistics either over the

entire flow, or over certain number of packets for unlimited

amount of time. We collect flow stats over a fixed time

window, as short as 200 msec, and determine the flow-type

corresponding to each window of the flow. This real-time per-

window detection of flow-type is useful for conferencing apps

such as Skype that can switch the type of a flow between voice

and video (+voice) over time.

In addition to the lower order flow-level statistics (i.e.,

number of packets, number of bytes, protocol, and mean,

median, minimum, maximum, and variance of the packet sizes

and IPTs), researchers have also utilized higher order statistics

such as the Discrete Fourier Transform (DFT), to further

improve the detection accuracy. However, DFT has two main
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Fig. 3: (a) Data requirement for various TV Engine modules. (b) Applications and the corresponding flow types in Dataset 2.

time window low-order features f fDFT fDWT

200ms 75.5 ± 2.6 81.5 ± 3.1 89 ± 3.8
2000ms 83.1 ± 2.3 88.0 ± 2.7 94.8 ± 2.7

TABLE I: Flow-type detection accuracy (% F-measure) of 3

feature sets. [mean ± stdev] over 15 apps with 8 flow types.

limitations: 1) It assumes that signals are stationary, i.e., the

periodic patterns do not change over time. However, most

real world time series signals including the packet size and

IPT signals are not stationary. 2) DFT only captures global

features thereby loosing information on local properties of

the signal. Considering these limitations, in this paper, we

introduce Discrete Wavelet Transform (DWT) [7] that is more

robust in capturing both the global and the local variations

of the time-series data. DWT (O(N)) is also faster than DFT

(O(N logN)), where N = # of data points in the sequence.

In [35], authors have summarized a list of flow features

that have been used for traffic classification. We use these

features to create two features sets; f that includes the list

of basic features without the DFT coefficients calculated for

packet size and IPT sequences, and fDFT that combine f with

the DFT coefficients of packet size and IPT sequences. In

addition to these two feature sets, we develop another feature

set, fDWT that combine f with the DWT coefficients of

packet size and IPT sequences. Note that, none of the previous

traffic classification techniques have used DWT coefficients as

features. Table I compares the flow-type detection accuracy

using these three feature sets. Clearly, inclusion of DWT

coefficients as features improves the overall accuracy of traffic

classification.

B. Ground-Truth Data Collection

Fined-grained, accurate classification is only possible with

fine-grained and reliable ground truth data. Existing solutions

mostly relies on DPI and/or manual inspections [26], [48],

[39] for collecting ground-truth data. However, recent reports

[36] shows only 50% detection accuracy using OpenDPI and

other opensource tools. Furthermore, Commercial DPI engines

still misclassify significant portion of encrypted and HTTPS

traffic. DPI requires manual effort to build the application

signature, which makes it not scalable with the large growth

of mobile applications. Therefore, in this paper, we took the

approach of running an ”agent” software in user’s mobile de-

vices that directly communicate with the SDN controller (e.g.

Floodlight) to provide the fine-grained application information.

We leverage this agent software to collect standard netstat
logs, which provides the mapping of every active network

socket (TCP, UDP, SSL-encrypted) to the application owning

that socket. We use this mapping to label each flow statistics

collected from the wireless edges with the corresponding

application name. In many enterprises, employees require to

deploy device management agent software on their mobile

devices. This motivated us to run a software ”agent” on

selected employee devices, volunteers or dedicated testing

device to collect ground-truth data with flow features to train

and build classifier at network controller. This crowd-source

based scheme allows us to build the classifier in an automatic

and efficient way. Note that if a mobile app gets upgraded, it’s

ML-based classification model also needs to be redone. In that

case frequent update of mobile apps make ML-based solution

unscalable and challenging. Despite that, our automatic and

crowd-sourcing approach simplify the process of updating the

app’s traffic classification model.

Obtaining flow-type ground truth is more challenging as

there is no standard API, similar to netstat, that provides

clear information of flow type. Therefore, we optionally instru-

ment the software agent to automatically monitor activities of

media devices such as microphone, speaker and camera. In

addition to this automation, users can also voluntarily provide

information about their current activity (i.e. playing a video in

YouTube, Skype video chat etc.) using the agent software to

the SDN controller. Correlating this activity information with

network flow start/stop information from netstat is used to

infer the ground truth of these flow types.

C. ML Classifier

In TV Engine, the classifier has two modules for: 1)

identifying application name (i.e., Skype, Tango etc.), and

2) identifying the flow types. In following subsection, we

describe each of these modules.

1) Application Detection: We use a supervised learning

approach for application detection, where a classification rule

4141



is learned using the labeled training data. Specifically, we use a

C5.0 decision tree classifier [2] due to its overall performance

(accuracy and speed) [26]. In this decision tree, an internal

(non-leaf) node denotes a test on a flow feature, a branch

represents the outcome of a test, and a leaf node holds a class

label (i.e., application name). The training phase is performed

by using the device-crowd-sourcing approach to collect the

ground truth in a scalable and accurate manner. The training

can be done periodically to automatically update or improvise

the classifier. This trained classifier is used to identify the

application names of network flows in real-time.

2) Flow-type detection: Figure 2 shows the flow-type de-

tection module consists of two different scenarios (branches)

and consequently, requires two different flow-type classifiers

models. In this paper, as an example, we use the same k-NN

algorithm on the same feature set, different combinations of

ground truth and training sets for building the two flow-type

classifier models.

In the first scenario, the first N packets of the test flow

are captured but is not identified as belonging to a known

application. For this case, TV Engine uses aGgregated Flow-
Type (GFT) classifier that identifies only the flow-type. The

training data samples for GFT classifier are only labeled

with flow types. For example, assuming the training data

has no flows corresponding to Tango application, a Tango

video chat flow during real-time classification will be detected

as a flow corresponding to a new/unseen application and,

consequently, be forwarded to the GFT classifier to identify

the corresponding flow type (in this case, ‘real-time video’).

Per-Application Flow-Type (PAFT) classifier, the third

classifier, is used in scenarios where the application detector

successfully identifies the application name of a flow. In this

case, the flow will be forwarded to the PAFT classifier to

further identify the flow-type. For each known application,

we build a PAFT classifier using training data only from that

specific application. As an example, for Skype application that

has five flow types (as described later), we build a PAFT

classifier with five classes using the training data flows only

from the Skype application. During real-time classification,

when a flow identified as Skype using the application detector,

Skype PAFT classifier is used to identify the corresponding

flow-type. Our evaluation shows that PAFT yields higher

accuracy over the two other classifiers.

VI. EXPERIMENTAL EVALUATION OF TrafficVission

We evaluated TrafficVision using two datasets, described in

more detail below.

Dataset #1 was collected from a production enterprise

WLAN and used for application detection experiments. The

agent has been deployed on eight volunteer Android phones,

as well as two dedicated testing phones for manual collection.

The manual collection was needed to collect a reasonable

sample size for the applications of interest. Over 100K flow

samples from 89 different applications were collected, along

with the corresponding application names, over 4 weeks
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Fig. 4: System Evaluation a) CPU overhead for collecting

statistics from OVS for both APs and mobile devices. b)

Relative throughput changes while using TrafficVision.

period. Out of these set of applications, 37 applications are

ranked as the most popular applications in Google Play Store.

Dataset #2 was collected from Old Dominion University

campus network and used for flow-type detection module. In

terms of user interests [1], we choose 45 applications that

are the most popular applications from different application

categories (e.g. video stream, video/audio chat, audio stream,

social networking etc.). Flows from these applications were

categorized into seven major flow types as shown in Figure 3b.

For any other flow type that does not fit into any of these

seven flow types, we categorize it as a Background flow.

Each of these applications has at least two different flow

types including Background. In total, up to 3 million samples

(windows of minimum 200 msec) from 1200 flows with a total

duration of over 10, 000 minutes was collected for this data

set.

A. System Evaluation

In this subsection, we use Dataset #2 to evaluate the

CPU overhead of both APs and mobile devices as well as

the network overhead of TrafficVision while collecting flow

statistics. Note that, we use Open vSwitch version 1.11 in our

implementation, which only uses the micro-flows for caching

in the kernel space. In order to evaluate the CPU overhead of

the AP, we use one smartphone that runs different types of ap-

plications and is associated with our monitoring AP (Linksys

E3000) running TrafficVision that collect flow statistics. Figure

4a shows the distribution of the CPU overhead for both the

AP and the mobile device (Nexus 4 Android) with the average

overhead of 12% and %4 respectively. The figure shows that

mobile devices has much less CPU overhead compared to APs,

though the used AP has very slow processing speed (450MHz)

compare to the Nexus smartphone (1.5GHz quad-core Snap-

dragon S4). Despite the minor increases in CPU overhead,

TrafficVision has no impact on the network performances as

discussed next.

Figure 4b shows the relative change in network throughput

while running the TrafficVision. The figure shows that our

system has no noticeable changes in throughput. Typically,

OVS is designed to operate on very high line-speed such as

10Gbps, which is much higher then what we see at the wireless
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network edges. Moreover, the flow-statistics collection process

in TrafficVision runs as a separate thread from the main thread

of handling a incoming packet in the kernel space. Therefore,

our additional task to store timestamps and packet sizes in

the micro-flow hash table of OVS at the kernel space is

negligible with no impacts on network throughput. Similar

to throughput, we observed that there is no change in RTT

values. In future, we are interested in evaluating application

QoE for TrafficVision.

B. TV Engine - Classifier Models

In this section, we evaluate the accuracy of different clas-

sification models of TV Engine using both ”Dataset #1” and

”Dataset #2”.

1) Application detection: Figure 5a shows the application

detection accuracy for the most 37 popular applications in our

”Datasets #1”. This figure shows the average precision and

recall values for the 10-fold cross-validation, where applica-

tions are ordered in a decreasing order of their size. The figures

shows an accuracy over 90% for most applications, with an

overall average accuracy of 95.5%. In addition, eight very

popular applications (including Microsoft Exchange service,

Facebook, and Google+) achieved an accuracy of 100%. These

eight applications constituted around 40% of the flows in our

datasets. Moreover, 60% of the flows in our datasets were over

HTTPS, which demonstrates the advantage of the ML based

approach over DPI-based classifiers. Note that the average

application detection accuracy does not vary significantly

beyond the first 7 packets of the flow.

2) Flow-type detection: We evaluate the two classifiers

defined within flow-type detection module described in §V-C2

using Dataset #2 for both fDFT and fDWT feature sets. We use

the weka [21] machine learning tool to build GFT and PAFT

supervised K-NN classifiers with k = 3, which we found to

be optimal.

GFT detection: The aGgregated Flow-type (GFT) classifier

is used to identify the flow-type corresponding to a flow from

a new unknown application, as identified by the application

detection module. To evaluate the GFT classifier, for each of

the 45 applications, we build a classifier using the training

data that contains all flows except for that application. The

GFT classifier has eight classes corresponding to the tested

flow types. Due to space restriction, we present the confusion

matrix for only a subset of the applications as shown in

Table II, using the fDWT feature set and a window size of

200 msec. The accuracy of the GFT classifier is high (more

than 90%) for most media flow types, except for the ‘file

sharing’ and ‘screen sharing’ flow types (from Skype and

Tango). Interestingly, the file sharing and screen sharing flows

are misclassified with audio-video stream flows. We relate this

low accuracy to the very similar continuous TCP transfers of

these three flow types as well as to the low number of samples

in our training data (e.g., among the 15 applications, only

Skype and Microsoft Remote Desktop applications have screen

sharing flow type). This accuracy increases to 98% when using

window size of 2000 msec (not shown in the table).

PAFT detection: The Per-Application Flow-Type (PAFT)

classifier is used when the application name is already iden-

tified using app-detection of Section VI-B1. In this case, we

build and use a per-application classifier to identify the flow-

type. We build a PAFT classifier for each of the 45 applications

using only the flows corresponding to that application. Once

again, we present the confusion matrix of PAFT classifier for

the subset of applications using the fDWT feature set and a

window size of 200 msec in Table II. The table clearly shows

that the PAFT classifier outperforms the two other classifiers.

PAFT yields more than 90% accuracy for most media flow

types, except for the file sharing and screen sharing types

that exhibit similar flow patterns (continuous TCP transfers).

However, the accuracy increases to 98% using a window size

of 2000 msec (not shown).

3) Flow detection under adverse network conditions: Given

that the network condition can have a serious impact on the

values of the extracted features, we evaluate the robustness

and the consistency of our classifiers under various adverse

network conditions. More specifically, we evaluated our clas-

sifiers when the network flows experience packet loss and

out-of-order packets.We emulate packet loss and out-of-order

packets by dropping packets randomly and buffering packets

randomly over short durations. The classifiers are trained with

the ground truth collected under normal network conditions,

and tested under adverse network conditions. Due to the

space restriction, we only discuss the results corresponding

to the GFT classifier using a time window of 2000 msec.

The average classification accuracy (over all flow types) of

the GFT classifier using fDWT as features is 90.3%, 87.8%,

84.5% and 81.9% when 10%, 15%, 20% and 25% of packets

are dropped respectively. Similarly, the average accuracy of

the GFT classifier using fDWT as features is 91.7%, 88.5%,

85.7% and 83.1% when the percentage of the out-of-order

packets are 10%, 15%, 20% and 25%, respectively. We find

that these accuracies are dropped by 10-12% when using fDFT

as features. We observe similar patterns for other classifiers,

which clearly demonstrates the robustness and consistency of

TV Engine classifiers to realistic network conditions.

VII. A CASE STUDY OF TRAFFIC MANAGEMENT

In this section, as a proof of concept, we describe two

simple application-aware traffic management policy services

that leverage TrafficVision framework.

A. Use Case #1

In the first use case, we develop a “network management”

service that takes advantage of the deployment of TrafficVision
for home wireless networks. Assume members of a house

uses several smartphones and a tablet to stream movies and

other videos from Netflix, YouTube, and other popular video

providers. Since the tablet has bigger screen, it is expected that

this tablet should utilize higher bandwidth than any individual

smartphone in order to maintain a good video quality. Having

this requirement, we develop a policy control service to

allocate higher bandwidth to the video flows streamed by the
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(a)

Fig. 5: Application Detection Accuracy Using the first 7 packet sizes in the flow features

Pandora Skype Youtube Tango MRD
AS B RVo RVi FSM SS B AVS B Rvo RVi FSM B SS B

Audio Stream GFT 86.9 2.6 0 0 5 4.7 0 5.5 0 0 0 0 0 0 0
(AS) PAFT 97.3 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0
Audio Video Stream GFT 8.7 0 0 0 0 24.1 0 89.1 0 0 0 30.0 0 0 0
(AVS) PAFT 0 0 0 0 0 0 0 95.6 1.3 0 0 0 0 0 0
Real-time Voice Chat GFT 0 0 94 0 3 3.4 0 0 0 95.4 3.9 0 0 0 0
(RVo) PAFT 0 0 94.6 0 0 0 0 0 0 93.5 2 0 0 0 0
Real-time Video Chat GFT 0 0 0 90.3 15 0 0 0 0 2.6 92.1 0 0 0 0
(RVi) PAFT 0 0 0 95.7 4 3 0 0 0 3.5 94.8 11.3 0 0 0
File Sharing - Cloud GFT 2.4 5.8 0 5.8 0 0 7.9 0 6 0 0 38.7 10.3 7.5 1.8
(FSC) PAFT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
File Sharing - Messenger GFT 0 0 0 3.9 37.5 0 2 0 4 2 5 27.8 3.2 5.2 8.2
(FSM) PAFT 0 0 0 0 70 4.3 4.2 0 0 0 2 78.7 11.8 0 0
Screen Sharing GFT 0 0 3.5 0 39.5 67.8 0 5.4 0 0 0 3.5 0 87.3 0
(SS) PAFT 0 0 2.3 4.3 26 92.7 3.5 0 0 0 0 0 0 98.5 1.4
Background GFT 2 90.6 2.5 0 15 0 90.1 0 94.0 0 0 0 86.5 0 90
(B) PAFT 2.3 99.1 3.1 0 0 0 92.3 4.4 98.7 3 1.2 10 88.2 1.5 98.6

TABLE II: GFT and PAFT classifier accuracy using fDWT as the feature set and a window size of 200 msec.

tablet to guarantee its quality. This service allocates higher

bandwidth to the tablet by throttling the traffic of the other

devices (smartphones). Consequently, the video player on the

tablet would experience a higher throughput and thus would

request a higher quality profile that suites the tablet screen.

Intuitively, this device-based traffic throttling policy is only

activated when there is a video stream initiated by the tablet

and automatically deactivated as soon as the tablet video player

is turned off or when it downloads all the video chunks.

In the prototype setup, we used one android phone and one

tablet running YouTube app on both devices to stream and

watch the same video. The selected video is encoded with

different five bit rates from 245kbps to 730kbps corresponding

to the resolutions of 144p to 480p respectively. Initially, we

start streaming the video on the smartphone first and then after

a couple of seconds, we start playing the video on the tablet.

We measure the throughput and the playback rates on both

devices when TrafficVision is both active and not active. As

shown in Figure 6a when TrafficVision is not active, the tablet

video player not only suffers from poor viewing quality, but

also a significant instability in video quality. Figure 6b, on the

other hand, shows the performance when TrafficVision is active

and applying the policy control. It is obvious from the figure

that the video player on the tablet achieves better viewing

quality (730kbps/480p) in addition to better stability due to

the bandwidth reallocation enforced by TrafficVision. This

significant improvement indicates the necessity of deploying

TrafficVision at the wireless network edges to enforce network

fine-grained policy control.

B. Use Case #2

In this use case, we consider an enterprise WLAN set-

ting scenario of a company in which it prohibits the use

of any video chat application except its proprietary video

chat application during the working hours. Hence, traffic of

any commercial video chat application such as Skype video

chat needs to avoid the enterprise WLAN and gets offloaded

to cellular during the working hours. Given this scenario,

we develop a “network management” service that enforce

employee devices to run Skype Video chat traffic over cellular

interface during working hours. On the other hand, off the

working hours, the management service permits Skype Video
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(b) TrafficVision is active

Fig. 6: Throughputs and video rates of a smartphone and a

tablet when: a) TrafficVision is not active, and b) TrafficVision
is active.

chat traffic to run over the company’s enterprise WLAN.

Note that this policy of offloading is only applied on Skype

video chat flows but not Skype voice flows. Hence, Skype

voice chat flows are allowed to use the company’s WLAN at

any time of the day. In this enterprise scenario, we assume

that employee devices are running company’s agent software

that receives the policy command directly/indirectly from our

traffic management policy service that is running either on

WLAN access points or on WLAN controller.

In the prototype setup, we used 8 android phones and

one laptop playing an access point role. We run our traffic

management policy service and TrafficVision on the laptop.

On the phones, we run an “agent” software that receives direct

command from the “management service”. In the evaluation,

we run Skype video chat on one android smartphone and

Skype voice chat on another smartphone. The rest of the

smartphones generate background traffic using iperf. On the

laptop, the “management service” sets a policy to offload the

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700

D
at

a 
ra

te
(K

B
yt

e/
se

c)

Time(sec)

Blocked the Flow

Smartphone 1- Skype Video
Smartphone 2- Skype Voice

Fig. 7: Traffic Management for Skype flows.

Skype video chat flows to cellular interface during specific

time frame (working hours). Figure 7 shows how a Skype

video chat traffic flow has been offloaded to the cellular

interface when the policy is activated after about 5 minutes,

while the Skype voice chat traffic running on the another

smartphone remains using the Wi-Fi interface. In addition,

the figure shows how the data rate drops when Skype video

chat flow is offloaded to cellular, which is HSPA+. These

two prototype services demonstrate the potentiality of the

real-time, and more fine-grained policy making capability of

TrafficVision framework.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we push and extend the SDN framework

all the way to wireless network edges to have fine-grained

and real-time traffic classification solution, called TrafficVision.

In TrafficVision, we use ML-based approach for classifying

both mobile applications and their flow types in real-time. In

this paper, we also describe multiple use-case scenarios based

on TrafficVision. Later, in the paper, we evaluate our ML-

classifier by accurately classifying the 40 top most popular

mobile applications. We observe that in working places, most

user use a limited number of applications and most enterprises

care the most of the ”top” applications running on their

network. Therefore, for a specific enterprise, our system can

be easily configured and used to provide better fine-grained

classification performance for their top N most common

applications. Though we showed higher applications detection

accuracy for as many (or more) applications as compared to

previous work [26], [39], [35], [10], [17], we will continue this

research and cover wider range of applications and devices/OS

platforms.
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