@ SwimSy‘s':#

. meSDN: Mobile Extension of
SDN

Mostafa Uddin
Advisor: Dr. Tamer Nadeem
Old Dominion University

Very brief on SDN

* Networks are very hard to manage and evolve.
* Data Plane:

Fwding state + Packet header — forwarding decision
Fast(nano-scale) and local.

* Control Plane:
Compute the forwarding state for the data plane.

Routing, Isolation, Traffic engineering.

* Control Plane mess is the root cause of SDN.

@ SwirrJSbys;{

SDN: A layer of two Con
Abstraction

Routing , Access Control etc.

Global Network View (topology)

Forwarding
Model

Mobile Cloud Application®

* Mobile cloud application require guaranteed
network performance.

app
DN
S demand
controller

L= P
Py
) ;QEQW'—J‘-
1 N O
A N ; %

clients @@
9 o

* SDN controller need to provide performance
guarantee to clients knowing the app demand from
. the cloud server.

?

Y app servers

SDN 1in Wired and Wireles

We can provide performance
Guarantee by controlling
Network edge

I can't :(

[Wired } [Wireless J

* Point-to-Point full Duplex link. *Shared half-duplex medium.
* End device Tx don't interfere *Can't control client's uplink
with others. Tx.

@ SwirrJSbys;{

Pushing SDN to Clients

* Existing SDN framework stops at network edge.

* Highly predictable performance for client

device.

* SDN enable AP (OpenRadio and OpenRAN) cannot guarantee
wireless resource for uplink from the client.

* End-to-end QoS control.

* e¢.g. One client greedily using highest priority can unfairly

dominate uplink air-time resource.

Our Solution: meSDN

* meSDN (mobile extension of SDN): extend the
SDN framework to the end device.

* meSDN allows the control-plane of wireless
network to be extended to mobile device.

* Provide fundamental software-defined solutions

for many applications

* WLAN virtualization, application-awareness, E2E QoS, and
etwork troubleshooting.

meSDN: Smartness in End-De

* (Ground-truth information about client
application information.

* Monitor and manage mobile application's traffic
flows real-time.

* (Guarantee airtime resource.

* Provide end-to-end QoS service for mobile
clients.

@ SwirrESby‘s:'

Agent (@ Mobile endpoints!

* Not a new concept to centrally control the client
devices

(e.g. PC COE, BYOD solutions, VPN client, mobile WAN acceleration).

* Allows several benefits:

Users can have better and predictable network performance.
SDN controller can enforce policies directly on the client's traffic.

Support enhance network security, end-to-end QoS and WLAN
virtualization.

@ SwirrJSbys;{

meSDN Architecture

Flow Manager (e.g.

Open vSwitch, OVY).

Scheduler (e.g. Linux
multi Qdisc).

Local Controller (e.g.
Android userspace
software/agent).

Global Controller.

AP

Global Controller

Mobile Device

—

1) per-slice/user/app
policy & QoS profile

2) Aggregate resource
demand & QoS
requirement

3) Take actions to

Local Controller

4

Applications

User Space

TCP/IP

| 1

Flow Manager (e.g., OVS)

control/manage traffic. OpenFlow l | Wireless ext.
. Scheduler .
Linux TC (e.g., Qdisc) rssi,
drop cnt,
meSDN
ext.
meSDN API meSDN ext.
WiFi Driver
meSDN Architecture

@ SwimSy?'

meSDN: Flow Manager

* Itis a software OpenFlow ar Mobile Device

switch (e.g. OVYS) H

1) per-slice/user/app

* (Collect Flow statistics:

— OF Stat extension: burst
duration, burst rate and inter-

2) Aggregate resource
demand & QoS
requirement

3) Take actions to

Global Controller

Local Controller

policy & QoS profile [**}""

Applications

TCP/IP

1

eve. M| Flow Manager (e.g., OVS)
OpenfFlo [Wireless ext.

burst time, control/manage fraffic. l
= Li TC Schedule_r 1
* Enforce SDN policies] e
e.g., correct QoS marking =
meSDN API
meSDN ext.
. R WiFi Driver
* Interact with the WiF1 .
Driver to configure meSDN Architecture
/) SwimSys

meSDN: Scheduler

Extension to linux multiq 2 Mobile Device
or WiFi Driver that —p ‘

Local Controller Applications
1 lice/user/ User Space
supports 802.11e QoS. Y porstcsuserapn | L L | i
2) Aggregate resource TCP/IP
+ | demand & QoS
% requirement l I
Receive time window £ | 3) Take actions t | Flow Manager (e.g., OVS)
] an?r:II::::alnoangse ::'af'fic. OpenFlow Wireless ext.
from the local controller |3 I
5 2 cheduler .
to start/stop dequeueing. | © Linu Tc(?e_';_j’oi,isc, L
meSDN ’
— Time Window: e.g. [Start L‘eit
time, active duration, sleep meSDN AP meSDN ext.
duration] WiFi Driver
—e.g. 05:30:30, 10ms, 30ms mesDN Architecture
/) SwimSys

meSDN: Local Controller

Identify flows correspond to ap

each application.

Generate flow rules for OVS
— Based on per-application policy
given by central controller or the
user.

Read per-flow statistics from

Flow Manager.
* OpenFlow extension.

Control the scheduler.

Global Controller

Mobile Device

Local Controller

Applications

1) per-slice/user/app

policy & QoS profile [""}""

2) Aggregate resource
demand & QoS
requirement

3) Take actions to

control/manage traffic. OpenFlow l | Wireless ext.
ncrc [|
drop cnt,
meSDN
‘eit.
meSDN API meSDN ext.
WiFi Driver
meSDN Architecture
/) SwimSys

TCP/IP

|

Flow Manager (e.g., OVS)

meSDN: Global Controller

Interacts with local controller

* provide per-slice, per-user,
per-application policies and
QoS profiles.

* Collect 'aggregated' airtime
demand of the running
applications and QoS
requirements.

* Apply proper action back
to the local controller(e.g.
cheduling)

AP

Global Controller

1) per-slice/user/app

policy & QoS profile [""}""

2) Aggregate resource
demand & QoS
requirement

3) Take actions to

Mobile Device

Local Controller

Applications

TCP/IP

Il 1

Flow Manager (e.g., OVS)

control/manage traffic. OpenFlow l [Wireless ext.
. Scheduler .
Linux TC) (e.g., Qdisc) rssi,
drop cnt,
meSDN
ext.
meSDN API meSDN ext.
WiFi Driver
meSDN Architecture

@ SwimSys‘{

meSDN: Use-Cases / Applicati

Realtime detection/analysis of networks flows.

Network fault diagnosis and trouble shooting.

WLAN virtualization.

* QGuarantee airtime resource to multiple group of users.

Dynamic Policy Setting.

WLAN Virtualization

* WLAN virtualization enable effective sharing of '
wireless resources by a diverse set of users with
diverse requirement

pTDMA: WLAN Virtualizati

* pTDMA is a simple prototype of meSDN for
WLAN virtualization service.

* Manage airtime share between network
instances (their clients) that collocate in space
and channel

~ Assigning separate airtime slices among different network
instances

pTDMA: Scheduling Princip

Allocate large enough time window to
transmit and receive multiple packets.

Schedule multiple clients in a common slot
to maximize channel utilization.

The interval between consecutive time
windows should be based on applications’
traffic pattern & demand.

@ SwirrESby‘s:'

pTDMA: Prototype Schedulin

S
|j'ﬂ \'o o’V E D\f\l]

ce = o [& 5§ T
G5 G3

:E1 : G1 :E1 : G3 ;: E1 : G5
| E2 | G2 |E2 | GA | E2 | G6 |

Oms 10 20 30 40 50 60

* 50:50 airtime share between employee
network and guest network.

* Every time window 1s fixed of 10ms.
@ SwirrESby‘s:'

pTDMA: Implementation

Prototyped meSDN client-side component
on eight Google Nexus 4 Android phones

Root the device to install OVS and pTDMA
qdisc kernel modules.

Re-Build the kernel image

To implement the Wi-Fi driver byte limit in Nexus 4 WiFi
driver

Note: some other phones have Wi-Fi driver as kernel
module (e.g. Nexus S)

@ SwirrJSbys;{

pTDMA: Downlink Contro
Saving
WMM Power Save in a Wi-Fi Network Wi-Fi legacy power save

Client dozes between Access point buffers frames

frames to save power m while client dozes
th M ACK

{m 1) ACK (mreO)

Access
ownlin E‘ |H H Pomt
S Client -(—)
= B
s 5 PS-Poll ACK PS-Poll PS-Poll
Client

) rame (())

\ 7 (@ Client awake dozing
o Wi-Fi }:] e_i_w_c;rl: o @ ¥ «—> DCF Access Delay - Same for all traffic

Wi-Fi Phone

User 1 (client) Access point User 2

1. meSDN leverage WMM-PS to indirectly confine the downlink
traffic to the time window.

2. pTDMA allows to efficiently utilize the WMM-PS to have more
sleeping time without sacrificing the throughput performance.

pTDMA: Implementation Cha

Milli-second level synchronization between the
phones 1s needed for effective pTDMA.

— Achievable by GPS

— Note: traditional per-packet TDMA requires micro-second level time
sync

Driver buffering delay 1s large.
— Bufferbloat: Large ring packet buffer (100 to 300, total bytes >150KB)
used by WiF1, Ethernet drivers

— Byte Queue Limit(BQL) for Ethernet driver in Linux: buffer size limit
1s dynamically set based on recent “byte” dequeued by the NIC

— We set hard byte limit in Wi-Fi1 Driver to 15KB, enough for 10 pkt
802.11 aggregation

pTDMA: Experiment

L ‘ | ‘ | We formed two network

AN " N, slices
3 \'o o NV

0 L

G5

G6 E1 a4 U @2 £, G1 “employee” network with 2 devices
G3
. E1, G1, E1, G3, E1, G5, “guest” network with 6 devices
: E2; G2: E2: G4: E2i G6i "
Om 10 20 30 40 50 60, Applied following pTDMA
E schedule with 50:50 airtime

share between two slices

— 3:1 airtime ratio btw an
employee and a guest.

(but all devices are connected to
one AP)

(ulink UD

10N

Evaluat

»TDMA

| 1
—

1

pTDMA - emplovee(2) 5

No pTDMA(S) !

PTDMA - guest(6)

-l
—

(sdqin) (p3s

-

—

.

sae)ndy

3noayl 4an

Experiment duration(sec)

pTDMA: Evaluation (Sleeping

Assume the driver goes to sleep state

| after Sms of activity in WMM-PS
08 | /4
A | with pTDMA In non-pTDMA, client sleeps 28% of
U “;rlthout pTDM A
06 | the time.
N In pTDMA, client sleeps 80% of the
0 10 20 30 40 50 60 tlme
am Inter-packet time (ms)

S
Client device pTDMA schedule

H G1 H H H H :G1

Om 10 20 30 40 50 60

S

@ SwirrESby‘s:'

TCP throughput(avg,std) (Mbps)

»TDMA:

Evaluation (uplink

12

10

No pTDMA(8) ——
PTDMA - guest(b) ——
pPTDMA - emplovee(2) —=—

20

40 60

80

Experiment duration(sec)

100

Increased transmission
time in pTDMA
schedule do not

adversely effect TCP
performance.

Related Work: WLAN i1nfra virtua

* Multiple SSID networks

* Don't guarantee wireless resource share to each SSID
network

* SDN enable AP(OpenRadio, OpenRAN, Odin,
CloudMACQC).

* No control on uplink traffic from client.

* Tuning 802.11¢ QoS parameters in AP

* Limait the virtual network to four QoS classes.

@ SwirrJSbys;{

Related Work: Client Side Solu

* Per-packet TDMA MAC to virtualize airtime.

* Clock Synchronization among devices.
* Hardware control from driver/firmware.

* SplitAP loosely control uplink

* Under Utilization of airtime

* Deployed OVS to utilize multiple network
interface.

@ SwirrJSbys;{

In Summary

* Extending SDN capabilities to mobile end
device.

* Propose and demonstration of meSDN
framework.

* As a proof-of-concept, we implement pTDMA
for WLAN virtualization service.

Thank you

JK Lee Jean Tourrilhes

	Slide 1
	Slide 2
	Slide 3
	Mobile Cloud Application
	SDN in Wired and Wireless
	Pushing SDN to Clients
	Our Solution: meSDN
	meSDN: Smartness in End-Devices
	SDN at Mobile endpoints!
	meSDN Architecture
	meSDN: Flow Manager
	meSDN: Scheduler
	meSDN: Local Controller
	meSDN: Global Controller
	meSDN: Use-Cases / Applications
	WLAN Virtualization
	pTDMA: WLAN Virtualization
	pTDMA: Scheduling Principles
	pTDMA: Prototype Scheduling
	pTDMA: Implementation
	Slide 21
	pTDMA: Implementation Challenges
	pTDMA: Experiment
	pTDMA: Evaluation (ulink UDP)
	pTDMA: Evaluation (Sleeping Time)
	pTDMA: Evaluation (uplink TCP)
	Related Work: WLAN infra
						 virtualization
	Related Work: Client Side Solution
	In Summary
	Slide 30

