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Abstract—In this paper, we design, implement and evaluate
the SpyLoc localization system. The design goal of SpyLoc is
to develop a light weight and high accuracy localization system
for off-the-shelf smartphones. SpyLoc leverages both the acoustic
interface (microphone/speaker) and the Wi-Fi interface at the
kernel-level of smartphones as well as the inertial sensors in
smartphones to achieve high localization accuracy. SpyLoc does
not require any central controller unit nor any collaboration with
nearby devices. Furthermore, in SpyLoc, each user’s smartphone
works autonomously to estimate its location. We implement and
evaluated the complete SpyLoc using commercial off-the-shelf
smartphones. Our result shows that SpyLoc can achieve less then
1 meter accuracy for more than 90% of the time for both indoor
and outdoor environments.

I. INTRODUCTION

In many indoor environments (e.g., airport terminal,
railway station, shopping mall, and office building), knowing
the location of the user would enable several interesting
application and services. For example, accurate indoors
guidance, efficient network management, generation of safety
alerts, access to merchandise and promotion information,
analyzing the popularity of different section in the store,
movement of the passenger etc. Numerous previous works
have been done in the area of indoor localization. Most of
the localization works have been based on Radio Frequency
(RF)-based techniques that leverages signal strength of RF
signal from different nearby RF sources or infrastructures
(e.g., Wi-Fi access point, cellular tower). Recent works show
that the existence of same signatures or fingerprints of RF
signals at different distinct locations prevents from achieving
high accuracy localization system [1], [2], [3] based on RF-
fingerprint. Researchers have tried to improve the localization
accuracy by leveraging advanced PHY layer information (i.e.
channel state information) from the Wi-Fi chipset. However,
such PHY layer information is not easily accessible in typical
devices such as off-the-shelf smartphones.

Nowadays, researchers are more inclined on developing
indoor localization system for off-the-shelf smartphones
because of the enormous popularity of location based
applications [1], [2], [4], [5], [3], [6], [7]. Recently, many
researchers are trying to combine multiple modalities such as
sound and inertia sensors of the smartphones with the Wi-Fi to
achieve higher accuracy localization system [1], [2], [8], [9],
[4], [5], [3], [6], [10], [11]. For example, localization schemes
in[1], [2], [8], [9] utilize the acoustic based ranging scheme
and combine it with the RF at the application layer. Other
approaches, which utilize existing inertial sensors in off-the-
shelf smartphones [12], [13], highly depend on the knowledge
of the environment. For example, the proposed system in [12]

highly depends on the layout of the building, which is not
practical in large open public spaces (e.g. airport, metro station,
shopping mall).

In this paper, we design, develop and evaluate a light-
weight high-accuracy indoor/outdoor localization system (Spy-
Loc) for off-the-shelf smartphones. SpyLoc leverages both: 1)
the integration of the acoustic interface (microphone/speaker)
and the Wi-Fi interface at the kernel-level of smartphones, and
2) the inertial sensors in smartphones in order to achieve high
localization accuracy. The proposed system uses a combination
of both ranging-based and dead reckoning based approaches.

In the ranging-based approach, similar to the well known
Cricket [8], SpyLoc utilizes the difference in arrival times
of concurrent transmissions of radio and acoustic signals at
the target device to infer the distance. Unlike Cricket, which
was designed with special hardware that is not applicable to
smartphones, SpyLoc uses our developed ranging scheme RF-
Beep [14] that is designed and developed for smartphones.
Other previous acoustic-based range estimation works require
two-way communications between smartphones[15], [2], [1].
This two-way communications are needed to eliminate the
time synchronization requirement, and the sound generation
uncertainties in smartphones. However, these localization
schemes require centralized system for smartphones collab-
oration that incur high overhead. Unlike these works, our
ranging scheme RF-Beep, integrates the audio interface and
the Wi-Fi interface at the kernel space to eliminate the
uncertainties of sound generation in smartphones. In addition,
RF-Beep scheme leverages this kernel level integration to
achieve the time synchronization requirement using only one-
way communication.

In the dead reckoning approach, we use the inertial sensors
to detect steps and moving direction to estimate traveled
distance by the user. Most recent step detection techniques
used in previous work apply Dynamic Time Wrapping (DTW)
algorithm [16] to find out the step pattern from inertial sensors
raw data. The advantage of using DTW is that it can detect the
step pattern regardless of how fast the user is walking. Note
that, user’s walking speed is not always the same over time.
However, in previous works, the step detection techniques use
a fixed time window of samples to estimate the step pattern. In
addition, none of these schemes have any analytic explanation
about the selection of such fixed window of samples other than
empirical observations for individuals. Unlike the previous
works, in this paper, we select the window size based on
the step model analytics of human walking. In addition, we
also propose an adaptable shifting window algorithm that
addresses the challenge of different walking speeds of different
individuals.978-1-4799-4657-0/14/$31.00 c© 2014 IEEE
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Fig. 1: a) Architecture overview of the different components of SpyLoc localization system. b) Phone, user’s walking and global
coordinate systems and relations between them. c) Sensor fusion block diagram for direction estimation.

Detecting the moving direction, regardless of the orien-
tation and the position of the smartphone (i.e. shirt pocket,
pant pocket, in bag, in user’s hand, attach to belt etc.), is a
challenging task. Given the inaccuracy of compass/magnetic
sensor in smartphones in indoor environments due to the
surrounding ferromagnetic devices [17], and the overhead
incurred in the frequent calibration of this sensor, we develop
in this paper a technique to find the relative rotation/turn of
the user based on the inertial sensors only rather than using
the compass/magnetic sensor.

SpyLoc leverages the benefits of both the dead reckoning
and the ranging schemes to build a practical localization
system. Given the accumulative errors of the inertial sensors
to track user’s movement over the time, SpyLoc uses the
RF-Beep ranging scheme to calibrate this error in order to
improve the localization accuracy. Unlike ranging-based or
RF-based localization schemes that require multiple reference
points (e.g., access points), using the dead reckoning in SpyLoc
reduces the number of needed reference points to at least one
reference point to locate and track user’s movement accurately.
This low dependency on ranging scheme and the elimination
of any calibration make SpyLoc a light-weight system and
practically suitable for mobile users.

From experiments, Non Line-of-Sight (NLoS) scenarios,
where sound sources are blocked from the smartphone by
obstacles, degrade the accuracy of RF-Beep ranging scheme.
However, we show how can we utilize the unique acoustic
features to differentiate between the Line-of-Sight (LoS) and
the NLoS acoustic signals. To the best of our knowledge, this
sound signal classification for both LoS and NLoS scenarios
is a new contribution for localization systems.

We summarize our contribution in this paper as follow:

• Implementation of SpyLoc; a light-weight high-
accuracy localization system using off-the-shelf smart-
phones.

• Evaluation of SpyLoc under several real scenarios and
different mobility conditions.

• Development of a stride detection algorithm to
efficiently detect the users stride using inertial sensors.
Given different users have different strides and speeds,

the proposed algorithm is adaptable to detect and
estimate different stride lengths corresponding to
different users and different speeds.

• Development of a robust direction change detection
algorithm that infer user’s relative direction change
by fusing inertial sensors.

• Detailed study of the Line-of-Sight (LoS) and Non-
Line-of-Sight (NLoS) acoustic signals and devel-
opment of a classification method to differentiate
between LoS and NLoS signals.

The paper is structured as follows. We introduce SpyLoc
with brief discussion on each component in the system
in Section 2. In Sections 3-6, we describe in detail the
different modules that construct client components of SpyLoc.
We evaluate the performance of the system under different
indoor/outdoor scenarios in Section 7. Then we discuss the
related works in Section 8 and conclude with Section 9.

II. SPYLOC LOCALIZATION SYSTEM

Figure 1a shows the different modules of SpyLoc system.
Similar to many localization systems, SpyLoc consists of
two main components: infrastructure component that runs on
infrastructure hardware, and client component that runs on
the user’s device (i.e. smartphone). In this paper, we refer
to an infrastructure device running the SpyLoc infrastructure
component by a beacon device. The beacon device periodically
broadcasts a RF message (i.e. Wi-Fi beacon frame), which
we refer to as a beacon. In addition, the beacon device also
generates an acoustic signal, beep following each broadcasted
beacon message. In a practical scenario, a beacon device could
be an Access Point (AP) with additional acoustic interface
(i.e. speaker, mic and sound driver). A user’s smartphone
running SpyLoc client component (i.e., SpyLoc application)
will capture the beacon messages and the corresponding
beep signals from the surrounding beacon devices. Using the
captured beacon messages and the corresponding beep signals
in addition to the inertial sensors in smartphone, SpyLoc
application will infer the user’s location.

In a typical usage scenario, when the user starts the SpyLoc
application in the smartphone, it will initially collect the



beep signals from the surrounding beacon devices along their
corresponding beacon messages. Each captured beep signal
at user’s smartphone will be classified either as a Line-of-
Sight (LoS) signal or as a Non Line-of-Sight (NLoS) signal
with respect to its corresponding beacon device. Only for the
LoS signals, the application determines the relative ranges
between the user’s smartphone and the corresponding beacon
devices. Then, the application combines three estimated ranges
from three different beacon devices to estimate the user initial
location. After fixing the user initial location, SpyLoc uses the
inertial sensors to detect the distance and the direction to track
the next user’s locations. On periodic bases, SpyLoc uses an
estimated range to a single LoS beacon device to calibrate and
calculate the accurate location of the user.

In SpyLoc, user smartphone calculates the location locally
and no collaboration with neighboring devices is required.
SpyLoc only requires one-way transmission; the transmission
of the beacon messages and the beep signals by the beacon
devices. Hence, user application does not require sharing any
sound signal or Wi-Fi information with any nearby device
or access point. This enables to preserve and protect the
user security and privacy, and makes SpyLoc energy efficient
application for smartphones.

In the following subsection, we provide a brief overview
of the infrastructure component and the client component.

A. Infrastructure Component

The beacon device (e.g. Wi-Fi AP), which runs the
infrastructure component of SpyLoc, periodically generates
a RF beacon message followed by a beep signal. A single
frequency sinusoidal acoustic signal defines the basic sound
that we refer to as a tone in the paper. A mixture of tones
(i.e., set of frequencies) defines a beep signal. Given the typical
human hearing perception diminishes after 18kHz, we utilize
the 18kHz-21kHz audio frequency range that is perceptible
to the most of the off-the-shelf smartphones [18]. From
experiments, we found that if the frequency space between
two adjacent tones is 250Hz, then it is sufficient to avoid
the interference and be able to detect the individual tones at
the user side. Therefore, we the selection of 10 tones (i.e.,
frequencies) (f1, f2, ..., f10) from 18kHz-21kHz audio range,
we have up to 210 unique beep signals. One of the major
challenge in the infrastructure component is, How to uniquely
and autonomously define the tones of the beep signal for each
beacon device?

In selecting the tones, we utilize the least ten bits of the Wi-
Fi MAC address the beacon device. Each bit position within
this ten bits sequence is corresponding to a unique tone from
the possible tones {f0, f1, ..., f9} (i.e. the 0th bit map to f0,
1th bit map to f1, and so on). A value of 1 in a bit position
indicates that the corresponding tone exists in the beep signal
and vice versa for the value of 0. For example, if the MAC
address of a beacon device is C4 : 2C : 03 : 3A : 2C : A1 that
has least ten bits as 0010100001, then the selected tones of the
beep signal for that beacon device would be {f0, f5, f7}. The
beep assignment mechanism guarantees a very low probability
of duplicate assignment. For example, with ten beacon devices
within the proximity of each other, the probability of having
two or more beacon devices with the same beep is about 4%
(
∑i=9

i=0(210 − i)/
∑i=9

i=0 210).

In our implementation, we utilize the Wi-Fi beacon frame
as SpyLoc beacon message. We assume that each beacon

device could add its location information in the payload of the
Wi-Fi beacon frame. Thus, SpyLoc client application could
be pre-configured with the locations of the beacon devices, or
learn the beacon devices locations from their beacon messages.
In section 5, we describe more details about the beep signal
detection technique, and how to map the beep signal to its
corresponding beacon frame. In our implementation, we use
Nokia smartphone (i.e. Nokia N900) with an external speaker
(i.e. Nokai MD-11) as a beacon device.

B. Client Component

In SpyLoc, client component consists of five main modules
shown in Figure 1a and described in the following:

Distance Estimation module: Distance estimation module
estimates the distance at each step of the user. In order to
estimate the distance, this module applies an adaptable step
detection algorithm. Then, it utilizes a personal step model to
infer the user’s step length. SpyLoc client application utilizes
both the ranging scheme and the step detection algorithm to
build user’s step model online.

Direction Estimation module: This module estimates the
user’s change of direction with respect to the human’s moving
direction. First, It fuses the multiple inertial sensors such as
the accelerometer sensor and the gyroscope sensor to find out
the orientation of the phone. Second, it uses the Principal
Component Analysis [19] technique to infer the direction of
the user moving direction. In sections 3 and 4 we describe both
the distance and the direction estimation modules respectively
in more details.

Non Line-of-Sight (NLoS)/ Line-of-Sight (LoS) Detec-
tion module: The NLoS/LoS detection module consists of a
classifier and feature extraction components. We use a binary
classification model through an offline training to classify and
detect whether a received beep signal is LoS (or NLoS). Once
the SpyLoc application on the user’s smartphone receives a
beep signal, it uses the feature extraction component to extract
the corresponding features from the beep signal and then
detects whether the beacon device corresponding to a received
beacon is in the LoS (or in the NLoS) of the user’s smartphone.

Range Detection module: For a LoS beep signal, range
detection module is responsible to estimate the user’s distance
to the corresponding beacon device. This module uses the Time
Difference of Arrival (TDOA) of both the beacon message
and the corresponding beep signal to estimate the distance
between the user smartphone and the beacon device. This
range detection module is built based on our previous work
RF-Beep [14].

Location Determination module: The Location determi-
nation module calculates user location based on the outcomes
of the range detection, distance estimation, and direction
estimation modules. Knowing the current location of the user,
this module estimates the next possible locations using the
distance and direction estimation modules. However, at that
time, If the range detection module provides the relative
ranging of the user smartphone for at least one beacon device
(i.e., when the user is in LoS with at least one beacon device),
then this module utilizes the estimated range to calibrate user
location. Under certain conditions (e.g., locate user initial
position, and building step model) the range detection module
utilizes the relative ranging of the user smartphone from at
least three beacon devices (i.e., when the user is in LoS with
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Fig. 2: (a) Step detection in raw sensing data. (b) Accuracy of the step model in estimation average step length. (c) Accuracy
of step length detect for different speed of walking. (d) Classification Accuracy of detecting LoS/NLoS.

at least three beacon devices) to apply triangulation technique
to determine user location.

In the following sections, we describe each of the client
component modules in more details.
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III. DISTANCE ESTIMATION MODULE

This module has two submodules i) Step Detector, and ii)
Personalized Step Model

i) Step Detector: In step detection we use the commonly
used accelerometer and the gyroscope sensors of the
smartphone to detect and track user steps. Figure 3, shows the
details of our adaptive step detection algorithm. In SpyLoc,
step detection is activated only when the user moves. In doing

this, we utilize the change in gyroscope sensor reading above
certain threshold as an indication of movement and initiates the
step detection algorithm to start capturing the accelerometer
data. In our implementation, we set this threshold value to 0.3.
Given the stride length (step size) is proportional to the walking
speed [20], we use mmax parameter to represent the maximum
length of a person step in terms of number of samples and
defined as follows, mmax = smax

vmax
× fa, where smax is the

maximum length of a person’s step, vmax is the maximum
walking speed of person, and fa is the collection frequency of
accelerometer samples from the smartphone. Similarly, mmin

parameter is defined as the minimum length of a person
step. We use the smax, vmax, smin, and vmin values defined
in [20] in our step detector algorithm. Since we use fa = 50
samples/sec in our implementation, the corresponding mmax

and mmin are 65 and 25 respectively.

After collecting mmax raw 3-axis accelerometer samples,
we calculate the vector magnitude of each 3-axis accelerometer
sample in order to make our algorithm independent of the
user orientation. Similar to other algorithms [16], [12], [13],
we apply the Finite Impulse Response (FIR) low pass filter
to reduce the impact of the noise in the mmax samples.
Then, we normalize the mmax samples before feeding it to
the Dynamic Time Wrapping (DTW) algorithm. The DTW
algorithm compares the similarity between the predefined step
pattern (with size of n samples where n ≤ mmax) and the
captured mmax samples to detect whether a step exists within
the mmax samples. Unlike correlation and threshold-based
methods [12], [13], DTW adaptively detect user step regardless
of the different lengths corresponding to different walking
speeds. In our implementation, we used the predefined step
pattern of size n = 45 samples.

The DTW algorithm calculates d[n×mmax] matrix scores
with positive values. The lower score of d[i, j] indicates a
better matching between predefined stride pattern of size i
samples and the captured samples of size j. Unlike common
use of the DTW algorithm [16], we search for a cell d[n,m]
with the minimum value between d[n,mmin] and d[n,mmax]
cells (the minimum value at the green dotted curve In the
Figure 3). If this minimum value is below a certain threshold
∆, then a step length of m samples is detected. Otherwise,
there is no step detected within the captured mmax sample.
By conducting several experiments, we set the threshold ∆ to
0.4 in our implementation. If a step is detected, then we shift
the searching window for detecting the next step by m samples.
Otherwise we shift it by mmax samples. Figure 3 shows how
accurately the detected step by our scheme matches the actual
accelerometers samples corresponding to the actual user step
in a walking experiment.



ii) Personalized Step Model: We use the commonly used
following step length model [16], [12] as our personalized step
model, s = a × f + b, where s is the step length, f is the
frequency of steps, and a, b are the person-dependent constants.
In order to define the personalized step model, we have to
calculate the constant parameters a, b for each user. SpyLoc
utilizes the ranging scheme to track the user consecutive
locations using at least three ranges from three different beacon
devices. Then the system matches those locations with the step
counting to build the step model of the user using line-fitting
algorithm.

iii) Evaluation: In figure 2b, we plot the estimated step
length error by building the step model from 5,10, and
15 detected steps. Increasing the number of steps to build
the model reduces the overall error of estimating the step’s
length. In figure 2c, we also evaluate our adaptive step length
estimation technique for two different speeds. We use speeds
of 1.7 m/sec and the 2.2 m/sec as the normal and the fast
walking speed of a person respectively. In both speeds, we
found almost similar distribution of estimation error. In figure
2c, about 90% of the estimation error is less then 6cm for both
speeds.

IV. DIRECTION ESTIMATION MODULE

In a practical environment, the smartphone could have
any arbitrary orientation with respect to the user direction of
movement. Therefore, It is a challenging task to determine
the changes in user direction using the smartphone’s sensors
reading. In order to address this challenge, we consider
three different coordinate systems shown in Figure 1b: phone
coordinate system, user’s walking coordinate system, and
global coordinate system. While the user’s walking coordinate
system represents the forward direction, side, and gravity, the
global coordinate system represents the north pole, the east
and the gravity of the earth. In addition, the global coordinate
system is a fixed coordinate system, while the other two
coordinate systems are not fixed. For example, the phone
coordinate varies with the phone orientation, while the user
coordinate changes with the change in moving direction. Thus
our idea is to map both the phone and the user’s walking
coordinates to the global coordinate. In phone coordinate,
we need to determine the three rotation (orientation) angles
(αx, βy, γz) around the three axis to transform the phone
coordinate to the global coordinate.

In determining the phone orientation, we use the
accelerometer and the gyroscope sensors. We avoid the
magnetic field/compass sensor due to its high sensitivity to
the surrounding magnetic devices. Figure 1c shows the block
diagram of the sensor fusion technique we use to determine the
phone orientation with respect to the global coordinate system.

In user’s walking coordinate, the gravity (G) axis is the
same as the -z axis in the global coordinate. Moreover, the
other two axises (the forward direction (F ), and the side (S)
direction) are in the x, y plane of the global coordinate. Note
that, the linear accelerometer readings from the smartphone
are in respect to the phone’ coordinate. Therefore we use
the estimated orientation αx, βy, γz to transform the linear
acceleration readings of the smartphone to global coordinate.
Now, if we plot the linear acceleration readings in the x, y
plane of the global coordinate, then the highest variation of
changes of the projected readings will indicate the user’s
walking direction (F axis). We apply the Principal Component
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Fig. 4: Sequence of non-overlapping PCA windows. The blue
line represents the PCA axis.

Analysis (PCA) [19] analysis on the transformed samples to
find out the direction of the F axis in the x, y plane. In our
implementation, we use 25 samples as the PCA window where
33.36 is our sampling rate per second. Figure 4 shows four
sequential PCA windows where the user took a 90 degree turn.
The dots in the plots are the transformed linear acceleration
samples in the x, y plane of the global co-ordinates. The
straight line in the plot represents the PCA axis which is the
user’s walking direction. In Figure 4, the PCA windows 2 and
3 shows the transition of the user’s 90 degree turn.

Evaluation & Discussion: In Figure 5a, we evaluate the
stability of our direction estimation technique while the user
is walking straight. In a straight walk, the cdf plot shows that
70% of estimated direction changes are less then couple of
degrees, while 98% of the values are less than ten degrees. In
Figure 5b, we evaluate our direction estimation technique by
plotting the estimated direction changes when the user takes
a sequence of direction changes. Note that, we use the right
and the left turns as positive and negative direction changes
respectively.
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V. NLOS/LOS DETECTION MODULE

In this section, we start with describing the scheme a
SpyLoc client uses to detect the beep signal from the captured
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signal. Then, we analyze some common wavelet patterns of
the beep signal and describe some anomalies that we have
observed under different LoS/NLoS conditions. Finally, we
describe the binary classification model (LoS/NLoS) we apply
on beep signals.

A. Beep Signal Detection

Precise detection of a beep signal at the receiving side
is crucial in estimating the accurate range between the
user and a beacon device. We use our developed method
described in RF-Beep [14] to detect the different tones in
a beep signal. In addition, correlating the beep signal to its
corresponding beacon frame from a particular beacon device
is also challenging. This challenge has also been addressed
in Cricket [8] system, where they fundamentally transmit a
customized RF frame for a long duration to overlap the audio
tone transmission. However, such solution is not practically
adaptable with the existing RF infrastructure (e.g. Enterprise
Wi-Fi Network). In our system, SpyLoc exploits the existing
RF infrastructure (i.e. WLAN) without disturbing its typical
operation. For example, we have described in section II-A
how we utilize the periodic Wi-Fi beacon frames from Wi-
Fi APs as our beacon messages. Therefore, in SpyLoc we
have to the address the correlation challenge in a different way
without disturbing the regular communications of the existing
RF infrastructure.

Figure 6a shows three challenge scenarios of mapping the
received beep signal to its corresponding beacon message.
Considering the first scenario, where a client device receives a
beacon message from beacon device ’A’ followed by a beacon
message from beacon device ’B’. Thereafter, the client device
receives a beep signal from device ’B’ before receiving a beep
signal from device ’A’. In such scenario, in order to prevent
the ambiguity of mapping beep signals to the correct beacon
messages, beep signals from specific beacon device need to be
uniquely identified. In section II-A, we described how uniquely
beep signals could be constructed for each individual beacons
device in order to resolve the described scenario. In the second
scenario, a client device receives both beep signals from two
beacon devices ’A’ and ’B’ at same time. Given the clients
knows the tones of the beep signal of each beacon device
either be pre-configured or by including the information in
the beacon messages, the client will be able to distinguishable
between the two beep signals if each beep signal has unique
non-overlapping tones. Otherwise, the client will only detect

the beep signal with the dominant set of tones. Therefore,
in this scenario the device will be able to correctly map at
least one (if not both) of the beep signals to its corresponding
beacon device. In the third scenario, a client device receives
another beacon message before receiving the beep signal of the
previous beacon message. Given a typical AP is transmitting
Wi-Fi beacon (i.e., beacon message) every 100ms and given
the acoustic signal speed in the air, the third scenario will be
infeasible if we the distance between a beacon device and a
client is within 35 meters. Studies show that the typical range
of a Wi-Fi AP at indoor environment is less than 35 meters [3].

LoS

(a)

NLoS

(b)

Fig. 7: a) The exponential slope of reverberation decay for
LoS scenarios. b) The linear slope of reverberation decay for
NLoS scenarios.

B. Beep Signal under LoS/NLoS Conditions

In this subsection, we describe the features used to classify
and detect whether the captured beep signal is corresponding
to a LoS (or a NLoS) scenario. In SpyLoc, we use the
reverberation time [21] to classify between the LoS and the
NLoS beep signals. Reverberation is the collection of reflected
sounds from the surrounding surfaces/walls following the
direct sound. The reverberation time is defined as the time
taken by the reflected sound energy to decay by 60dB after
the direct sound source stops. From experiments, we found
the decay in the energy/intensity of the reverberation for LoS
scenarios is exponential right after the direct sound stops
(Figure 7b). On the other hand, the reverberation decay is
almost linear in NLoS scenarios (figure 7b). We leverage this
characteristic to build our classification model based on the
features extracted from reverberation decay time.

C. Classification of LoS/NLoS Signals

This section describes both the training and testing phase
of the classification model we developed to detect whether the
beep signal is corresponding to a LoS (or a NLoS) scenario.
Given the reverberation decay does not always reduce to 60dB
due to background noise, we use the set of times needed to
decay by 5dB, 10dB, 15dB, 20dB, 25dB, and 30dB as our
features (experiments show that up to 30dB decay is enough to
differentiate between exponential or linear decays). We labeled
those times as T5, T10, T15, T20, T25, and T30 respectively. In
training the classification model, we apply the following:

Using the training dataset, we extract the feature set
F = {T5, T10, T15, T20, T25, T30} for each beep signal in the
dataset. We use a naive Bayes Classifier [22] model with
equal prior probability to classify between LoS and NLoS beep
signals. The following probabilistic model is used as our naive
Bayes classifier,

P (C|F ) =
P (C)P (F |C)

P (F )

where P (C|F ) ∝ P (F |C) (1)



where C = {C1 ≡ LoS,C2 ≡ NLoS}. We use
m - Gaussian Mixture Model to build our two likelihood
function P (F |C1) and P (F |C2). Then we apply the Expected-
Maximization(EM) [23] technique to estimate the parameters
of these two likelihood function from our training data set.
Finally we use the classification model in Equation 2 to classify
the extracted features Ft from the testing dataset,

classify{C1, C2} = max
c
P (Ft|C = c) (2)

The naive Bayes model (Equation 2) basically performs
binary classification to detect whether the received beep signal
is corresponding to LoS (or NLoS) scenario. We experimented
with different number of gaussian mixture models to verify
the performance of our Bayes model as shown in Figure 2d.
We observe that Gaussian Mixture Model with 4 mixtures is
enough to achieve 96% accuracy. We collected 200 LoS and
100 NLoS beep signals for our dataset. We used 10-fold cross
validation over the dataset to calculate the overall performance
(Figure 2d).

VI. LOCATION DETERMINATION MODULE

The location determination module is responsible to
determine user location based on both the ranging estimation
and the dead reckoning approach using inertial sensors. If
the user is in LoS of at least three beacon devices, location
determination module applies the triangulation technique to
estimate the user actual location. However, in scenarios where
the user is moving, (e.g. walking or running), this triangulation
technique is not always practically applicable due to the
very short duration available for location computations. In
addition, the existence of three LoS beacon devices (e.g Wi-Fi
AP) in one location is not common. Therefore, our location
determination module utilizes the inertia sensors to predict user
location. However, such technique is not highly reliable in
predicting user location over long periods since localization
errors in dead reckoning scheme get accumulated over time.
Thus, instead of using three ranges from three beacon devices,
our location determination module utilizes only single range
estimation to calibrate the estimated location from the inertia
sensors. In situations where no LoS beacon device exists,
location determination module relies on the inertia sensors to
predict the location.

Figure 6b shows the calibration steps for estimating user
location. First, we use the inertia sensors to estimate the
user next position from the given initial position. Second, we
calculate the user range to a nearby LoS beacon device. Finally,
we estimate user location by calibrating the user next position
and the range estimation as shown in figure 6b.

VII. PERFORMANCE EVALUATION

A. Experiment Scenarios

We evaluate the SpyLoc localization system under the
following different scenarios:

• Scenario 1: In this scenario, we conduct the
experiments in a pre-defined path at an indoor
environment. Figure 8a shows the locations of the
beacon devices and the actual walking path. Note that,
during these experiments we use only single range
estimation and the inertial sensors to estimate user
location. In addition, we also evaluate the SpyLoc
system under different walking speeds.

• Scenario 2: The experiments are conducted in a
public space (i.e. Web Center) where we follow a
casual path as shown in Figure 8b. Figure 8b also
shows the positions of the deployed three beacon
devices. Similarly, during these experiments, we use
only single range estimation and the inertial sensors
to estimate user location. Experiments also evaluate
the SpyLoc system under different rates of beep
signals (e.g. beep/1sec, beep/10sec, beep/20sec and
beep/30sec.) in order to mimic the scenarios when
SpyLoc client application doesn’t receive any LoS
beep signal for different durations.

• Scenario 3: In this scenario, we conduct our
experiments inside the Web Center building. Figure
10a shows the locations of the three beacon devices
and the positions where we estimate the locations. In
these experiments, we estimate the user location using
only the range estimation scheme.

• Scenario 4:: The experiments are done in an open
parking lot space. Figure 10c shows the locations of
three beacon devices and the different positions where
we estimate the location. We use these experiments
to evaluate the range estimation scheme for outdoor
scenarios.

While results of both scenario 1 and scenario 2 are
averaged over 5 runs, results of both scenario 3 and scenario
4 are averaged over 10 runs for each of the 50 distinguish
locations. Note that, in all experiment scenarios, we track the
ground truth location by marking the paths and the positions
on the floor.

B. Experiment Results

Scenario 1: The plot in Figure 9a shows the CDF of the
overall estimation error by the SpyLoc Client for the walking
path shown in Figure 8a. As shown, the estimation error is
less than 50cm for 90% of the time. Plots in Figure 9b shows
the CDF of the estimation error for the walking path shown
in Figure 8a for different walking speeds. The figure shows
that the estimation error is less than 90cm for 90% of the time
for all different speeds. These results verify the feasibility and
the efficiency of our SpyLoc system under different mobility
conditions.

Scenario 2: The plot in Figure 9c shows the CDF of the
estimation error for the walking path at Web Center that is
shown in Figure 8b. These results verify the good accuracy of
SpyLoc even for normal casual walking patterns. In some of
these scenarios, SpyLoc client application might not be able to
receive any LoS beep signal from the nearby beacon devices.
In such cases, SpyLoc will rely solely on the inertial sensors
to estimate the user locations until it becomes in the LoS of
a beacon device and starts to receive LoS beep signals again.
In order to mimic this situation, we change the transmission
rate of beep signals. Plots in Figure 9d show the CDF of
the estimation error under different beep rates. The results
show that relying on the inertial sensors for long time could
can result in high estimation errors. Hence, by distributing
the beacons devices such that each location is in the LoS
of a beacon device would significantly enhance the location
estimation process.

Scenario 3: For the scenarios when the user just launched
the SpyLoc application and need to estimate user initial
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Fig. 8: (a) Indoor experiment setup at the department building where the walking path is marked by the green line. (b) Indoor
experiment at Web Center where the walking path is marked by the red line.
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Fig. 9: (a) CDF of the overall estimation error for the walking path shown in Figure 8a. (b) CDF of the localization error for
the walking path shown in Figure 8a using different speeds. (c) CDF of the estimation error for the walking path in Web Center
(Figure 8b). (d) CDF of the localization error for the walking path in Web Center (Figure 8b) using different beep rates.
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Fig. 10: (a) Indoor experiments at Web Center with three LoS beacon devices. (b) CDF of the localization error for the indoor
experiments shown in Figure 10a. (c) Outdoor experiments at the parking lot with three LoS beacon devices. (d) CDF of the
localization error for the outdoor experiments shown in Figure 10c.

position, or when the application does not receive any LoS
beep signal for a long duration, SpyLoc will need to calculates
three ranges to three LoS beacon devices in order to initiate
or calibrate user location. In order to evaluate this situation,
we run experiments to estimate the user location using only
the range estimation technique. Figure 10a shows the positions
of the collected samples (i.e., blue circles). These experiments
are done in a public place with a lot of surrounding students
and with several furniture such as tables, chairs and desktop
PCs. We deployed three beacons devices in which the distance
between any two beacon devices is in the range of 20-25m.
Figure 10b shows the CDF of the estimation error in which
the error is less than 1.5 meter for more than 90% of the time.

Scenario 4: The experiments are conducted at outdoor to
validate the feasibility of using SpyLoc application in outdoor
environments. In Figure 10c, blue circles show the position
of the collected samples. Figure 10d shows the distribution of
the estimation error in cm for these experiments. The figure
shows that the error in location estimation is less then 1meter
for more than 90% of the samples collected in this outdoor
experiment.

VIII. RELATED WORK

Most of the localization research works have been based
on Radio Frequency (RF)-based techniques that leverages the
signal strength of RF signals from different nearby RF sources



or infrastructures (e.g., Wi-Fi AP, Cellular Tower) [24], [9], [7],
[25]. Recently, researchers are combining multiple modalities
such as sound with the Wi-Fi to achieve higher accuracy
localization system [1], [2], [26], [8]. For example, localization
schemes [1], [2], [27], [28] utilize the acoustic based ranging
[15] scheme and combine it with the RF-based schemes at
the application layer. In addition, some localization systems
use multiple modalities of the smartphone to determine user
location at different levels of accuracy[10], [13], [16], [12].
The following table compares between the recent proposed
schemes and SpyLoc.

[1],
[2]

[13] [16],
[12]

[8] SpyLoc

RF or Acoustic
Fingerprint

Yes Yes No No No

Smartphone Us-
ability

Yes Yes Yes No Yes

Support User
Motion

No Yes Yes No Yes

Accuracy 1-
5m

1.7m 1-
5m

1m 1m

Floor layout or
Landmarks

No Yes Yes No No

Backend / Cen-
tralized system

Yes Yes No No No

IX. CONCLUSION

In this paper, we propose a practical location determination
system that leverages the balance between our high accuracy
ranging scheme and the light weight dead reckoning approach.
We show how both the acoustic and the RF interfaces in
off-the-shelf smartphones could be utilized to achieve a high
accuracy localization system. In addition, we also develop
an efficient and light way to utilize the inertial sensors to
determine the distance and direction of the user movement.
We also show how we leverage the unique characteristics
of the acoustic signals to differentiate between LoS and
NLoS acoustic signals. Finally, we evaluate our system under
different real scenarios where we consider different walking
speeds. Results show that SpyLoc in most of the scenarios is
able to achieve less then 1 meter accuracy.
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