BLESS: Bluetooth Low Energy Service Switching
using SDN

Mostafa Uddin Sarit Mukherjee

Hyunseok Chang T.V. Lakshman

Nokia Bell Labs, Holmdel, USA
Email: {firstname.lastname } @nokia-bell-labs.com

Abstract—Bluetooth Low Energy (BLE) is a low-energy per-
sonal area wireless network technology that is of increasing
importance for large-scale Internet of Things (IoT) deployment.
By design, BLE is localized to small regions and to simple
network topologies. Moreover, it is not designed for dynamic
enforcement of policy and access controls. These limitations are
impediments to BLE based IoT service deployment, where IoT
devices for a service may need to be grouped into a network
slice spanning a sizable geographic region and with strong per-
slice policy enforcement. This paper presents an architecture for
creating wide-area IoT service slices which utilize BLE devices
at the edge. For this, we introduce an SDN-controlled “switch
node”, called BLE service switch (BLESS) that is transparently
inserted between two communicating BLE devices. It can be
programmed at the service layer by a central controller and
enables flexible, policy-based switching between the devices. We
describe the design of BLESS, and illustrate its utility through
a few practical use cases.

I. INTRODUCTION

Bluetooth Low Energy (BLE) [1] is undergoing wide adop-
tion for interconnecting a large number of wireless devices,
particularly with the growth in the Internet of Things (IoT).
BLE devices are finding applications in medical and health
care services, home automation, factory automation, sensing
and control, consumer electronics, smart phones and tablets,
etc [2]. It is expected that by 2020, the global value of BLE
devices in IoT technology could be as much as $5.57 billion,
with most of the value coming from devices in health care and
manufacturing [3]. This wide adoption of BLE technology can
be attributed to two of its major features [2]: a simple low
power physical and data link layer that is suited for low cost
devices with long lasting operating life on battery; and client-
server based service layer (comprising of Attribute Protocol
(ATT) and Generic Attribute Profile (GATT) with ready-made
and extensible service profiles) that catalyzes fast development
of different services on devices.

As new and feature-rich devices with useful service profiles
and capabilities are introduced, the scope for creating a variety
of practical, large scale, networked services is expanding
[4]. Consider for example a large scale health care service
(beyond current personal health care monitors like FitBit)
that is based on an automated patient care system in a
hospital using different types of BLE devices [5]. Devices
used for such a service broadly fall into two categories [6].
Peripheral devices like heart rate monitors, blood pressure
monitors, weighing machines are used at the patients’ end to

measure and report patient vitals. Central devices like smart
phones, tablets, laptops and other GUI devices are used by
the medical and administrative professionals to subscribe to
services offered by the peripheral devices, systematically read
them, organize patient records, and take appropriate actions.

In such an environment, it is desirable to create different
network service slices that are overlaid on the large number
of IoT devices underneath. For example, a physician’s slice
consists of a private registered central device and all the
health related services provided by the peripheral devices that
connect to this physician’s patients, regardless of the distance
(within the premise or outside when a patient with wearable
devices is monitored remotely). Similarly, an administrative
professional’s slice may span across his central devices and
the battery status service of all the peripheral devices. These
two slices must remain isolated at the service layer, but do
overlap at the device connectivity layer. Slices may overlap
at the service layer, for example, when a patient is treated
by more than one physician. Needless to mention, network
service slices must be dynamically created, and be amenable to
real-time membership changes in both central and peripheral
devices and/or the services. The overall service depends on
the underlying communication amongst peripheral and central
devices that constitutes a BLE network. Communication and
networking requirements in a sizable geographic area (beyond
BLE’s range) with a large number of devices can be catego-
rized as follows:

Connectivity and reachability: Different types of devices
that are part of a service are connected to the BLE network
and are reachable when required. As new devices join the
service, they also get connected into the same network and
become reachable from other devices. For example, when a
medical professional wants to check the vitals of a patient,
the corresponding peripherals are readable from the central
device regardless of the distance.

Policy and access control: Access to a peripheral device
by a central one is governed by some policy so that security
and social responsibility of the service can be ensured. The
policy is implemented and enforced on each device to device
communication in real-time. In addition, the policy can be
updated without any service interruption. For example, a
heart rate monitor is accessible by both the medical and
administrative professionals; while the former can read the
patient vitals, the latter can check only the battery status.

BLE standard does not address either of these two re-
quirements adequately for a large scale networked service
environment. BLE is a connection-oriented peer-to-peer com-
munication technology that is extendable to a star topology,
where a central device can connect to multiple peripheral
devices within a short range. Although the most recent version
(where a peripheral device can connect to multiple central
devices) allows the creation of a mesh, the BLE protocol does
not support packet routing natively. So reachability from a
device to other devices is severely limited unless the devices
are directly connected. Access control to a device in BLE
is mostly limited to the link layer during connection setup.
As a consequence, once a central device gets connected to a
peripheral one, the former can access any service offered by
the latter. So dynamic device selection based on service is not
possible at a higher layer where the service is created [7].

The focus of this paper is on addressing both shortcomings
mentioned above and enable the creation of service slices,
while maintaining the native BLE service layer intact and
not entailing changes to BLE devices or applications. We
do this by introducing software defined networking (SDN)
into BLE networking, drawing upon the ability of SDN to
perform scalable and flexible policy-driven flow switching
and routing. To control BLE communication using SDN flow
rules, we introduce a new “switch node”, which we call the
BLE Service Switch (BLESS), in the communication path
between peripheral and central devices. BLESS maintains
link layer connections to the devices to support peer-to-peer
connectivity, but controls ATT packet flows at the service
layer using flow rules that are installed by a central controller.
With practical use cases, we show how incorporating SDN
technology enables service slicing in a BLE network. To the
best of our knowledge, this is the first contribution of using
SDN technology in BLE.

II. CHALLENGES AND CONTRIBUTIONS

The BLE standard defines devices with two key roles; pe-
ripheral and central [1]. In a BLE network, a pair of peripheral
and central devices communicate in a peer-to-peer fashion.
Prior to the communication, peripheral devices announce their
presence and connectability via BLE advertisement packets.
Any central device listening to the advertisement can initiate
a connection with the peripheral device. After establishing
a link layer connection, communication can go on in both
directions. Typically, the central devices that run the client
applications, send requests to the peripheral devices for the
services they support, and the peripheral devices respond. A
central device can connect to multiple peripheral devices, and
similarly a peripheral device can connect to multiple central
devices simultaneously.

The first and foremost challenge in incorporating SDN in
BLE networking is to decide at which protocol layer packet
flow rules should be introduced. In the BLE standard, if a cen-
tral device can establish a link layer connection to a peripheral
device, it can access all the services that the peripheral device
supports. To offer flexibility in service creation, the access to

the service profile (or different sub-profiles within a profile)
must be dynamically controllable depending on the role of
the central device (refer to the example scenario described in
Section I). We choose to apply policy control at the service
layer of BLE (composed of ATT and GATT) where service
profiles are maintained and accessed. This implies that even
if a peripheral device is connected to multiple central devices,
accessibility to service profiles is controlled based on the
identity of the central devices. Moreover, the access policy
is dynamically modifiable from SDN’s central controller so
that new services can be added, and existing services can be
modified without interrupting the ongoing service.

The next challenge is to determine a node in the BLE
network (like a switch or router in IP network) that is suitable
for applying the policy control as ATT packets flow through
the node. BLE is a peer-to-peer protocol and does not require
packet forwarding using an intermediary switch between the
devices. Without a switch in place it is not possible to
inspect the packet flow between the devices, which in turn
prohibits any policy enforcement. To address this challenge,
we introduce BLESS, a switch in the BLE network that is
transparently inserted between the devices without violating
any BLE protocol. BLESS resides in the data plane, has access
to the full protocol stack, and is used to enforce policy at the
service layer.

Challenges in building such a switch is manifold. Existing
SDN switches are IP protocol based. Their connectionless
architecture is not suitable for BLESS as BLE is natively
connection oriented between the peers. We, therefore, design
and develop BLESS bottom-up and make it behave as a central
device to a peripheral device and a peripheral device to a cen-
tral device. In its role as a peripheral device, BLESS advertises
on behalf of an actual peripheral device that is connected to it.
In its role as a central device, BLESS maintains a link layer
connection with each peripheral device within its range. Since
a central device connects to each peripheral device separately,
a single link layer connection between BLESS and a central
device is not enough to multiplex across different peripheral
devices. Therefore, in its role as a peripheral device, BLESS
maintains one connection per peripheral device that the central
device needs to communicate with.

As evident from the above description, BLESS (transpar-
ently) breaks the native peer-to-peer connection model and
introduces the ability to “forward” packets. This necessitates
device addressing and identification in BLESS, which is
not available in the service layer. BLESS adopts metadata
structures and exploits ATT protocol’s serialization to resolve
correct packet addressing and forwarding (see Section III).

Once BLESS is inserted in a network of BLE devices, a
central controller pushes ATT and GATT layer service rules
into it in real-time. BLESS keeps any connection related state
information in the packet forwarding path. This enables it
to employ a stateless match-action packet forwarding model
to examine each packet, and then to apply the action of the
matched rule that enforces access and policy control.

In order to extend the reachability, we augment BLESS

Central Controller
Contea c..an

AR

(a) (b)

Fig. 1: (a) SDN controlled BLE network. (b) BLESS and BLE
device link layer connection.

e

Network

with backhaul IP connectivity so that multiple such switches
are interconnected over an IP network (see Fig. 1a). Once a
peripheral device gets connected with a BLESS node, the cen-
tral controller determines the set of BLESS nodes that should
announce on behalf of the device via BLE advertisements. This
makes the peripheral device “reachable” to a central device
that is connected to a remote BLESS, beyond the physical
range of the peripheral device. If the central device wants to
connect to the peripheral device, it simply responds to the
advertisement packet originated from the local BLESS. For
example, in Fig. la, BLESS 2 can advertise for peripheral
device P; and let central device M5 connect to it even though
they could be far apart. If peripheral and central devices are
connected to two different switches, SDN controller installs
forwarding rules to carry the packets from one BLESS to
another within an IP tunnel.

III. BLESS ARCHITECTURE

In order to implement SDN control in BLE, we interconnect
two communicating devices via BLESS and instantiate packet
forwarding through it. When the devices get connected to
BLESS, the SDN controller identifies the devices and discov-
ers the services offered by the peripheral devices. This allows
the controller to install appropriate flow rules in BLESS. Once
rules are installed, BLESS examines each packet and enforces
the rules using match-action paradigm. Below we describe the
steps in more detail.

A. Packet forwarding using BLESS

In the link layer, BLESS needs to provide a transparent one-
to-one connection between peripheral and central devices. To
achieve this, BLESS responds to the advertisement of each
peripheral device and sets up a link layer connection with
it. Connection by peripheral devices only to BLESS can be
ensured by white-listing only the BLESS nodes in them and/or
by adopting an advertisement jamming scheme [8]. BLESS
creates ports (for example, 1p1, 1p2, 1p3 of Fig. 1b) for each
connected peripheral device. From then on, it advertises on
behalf of the connected peripheral devices. A central device
connects to BLESS at the link layer in response to such an
advertisement. A central device can establish multiple link
layer connections with BLESS, one for each peripheral device
that it wants to communicate with. This is in conformance
with BLE standard 4.1 and later that allows BLESS as a

peripheral device to connect with multiple central devices.
Moreover, by allowing multiple link layer connections from
a central device to BLESS (instead of a single connection)
the client application(s) running on the central device can
remain unmodified. Note that, each link layer connection from
a central device creates a port in BLESS that has one-to-one
mapping to a port of a peripheral device (i.e., as shown in
Fig. 1b).

After BLESS is (transparently) placed in between two
communicating devices, it examines the packet flow at the
service layer for enforcing access and policy control. In this
layer, BLESS introduces a packet forwarding model, instead
of a peer-to-peer communication model. One of the necessities
of packet forwarding model is to have source and destination
addresses for each packet. Unfortunately, the service layer of
BLE uses L2CAP packets, that is devoid of device addresses.
In our model, the central controller is responsible for assigning
a unique address to each device when it connects to BLESS.
A public or a static device address can be used as is since
it remains fixed for the duration of the connection. Only a
random address may be mapped to a fixed ephemeral address
by the controller (for example, by using hashing on some
of the device parameters). The address is used globally for
addressing a device (including advertisement as described
above) and orchestrating flow rule instantiation and packet
forwarding in the network, while the device is connected to a
BLESS. The address is carried as metadata with a packet in
the service layer to make packet forwarding decisions.

BLESS creates additional ports for any remotely connected
peripheral devices for which it advertises. It maps a central
device’s port connection to the port corresponding to the
peripheral device the central device wants to communicate
with. In BLESS, by default, packets are forwarded based
on the destination device address. It is the responsibility of
BLESS to gather the device address (and update the metadata
field) based on where the packet is coming from. Since
a central device has a unique port that connects to each
peripheral device separately, an incoming packet from a central
device will always have a unique destination peripheral device
address. However, since a peripheral device maintains only one
connection with BLESS, an incoming packet from it will be
destined to BLESS, not to any central device. BLESS resolves
the destination device address by leveraging ATT’s Sequential
Protocol feature [1], which restricts a central device to have
at most one outstanding request per peripheral device at any
time.

BLESS implements a serialization mechanism that emulates
a sequential request-response at each peripheral device’s port
by controlling the flow of requests from the central devices
to a peripheral device. Only the port that is locally connected
with the peripheral device implements this serialization mech-
anism. The goal is to uniquely match the response from a
peripheral device to the corresponding request to determine the
destination of the response. BLESS can take a naive approach
of sending one ATT request packet at a time till it receives
a response from the peripheral device. In a more pipelined

approach, BLESS can send multiple ATT request packets at a
time so long as they are not conflicting in terms of protocol
parameters and source device’s address. With this serialization
mechanism, BLESS leverages the request-response pattern of
ATT protocol to map the response packet with the request
packet. Thus, BLESS identifies the destination address of the
packet received from the peripheral device. There are a few
ATT operations (i.e., Notify), which does not follow request-
response model. In those cases, Controller keeps additional
state information for finding out the destination device address.

There could be scenarios, where a device could have the
role of both peripheral and central. For example, an Air
Conditioner (AC) can act as a central device with respect to
a thermostat, where AC can access the temperature service
of the thermostat. At the same time, AC can also act as
a peripheral for a smart phone/tablet, which runs the AC
control application. In such a case, AC will have one link
layer connection with BLESS as a peripheral device, and one
or more link layer connection(s) as a central device.

B. Control Plane Operations

In a network of BLESS, each BLESS node connects to a
central controller that is responsible for overall operation of
the network. An Openflow-like protocol is used for BLESS to
controller communication. Once a peripheral device connects
to a BLESS, the controller learns all the services it can offer,
and then makes it discoverable from one or more BLESS
nodes. It also installs service access policies for the device at
the relevant BLESS nodes and sets up tunneling information
for remote access between two devices. Below we describe two
BLE specific control applications, namely Device Discovery
and Connection (DDC), and Service Discovery and Access
Policy (SDAP).

Device Discovery and Connection (DDC): This applica-
tion installs rules in a BLESS that sends to DDC any captured
BLE advertisement packet from a peripheral device. The
advertisement packet contains the device’s public or random
device address and the advertising data. Upon receiving the ad-
vertisement packet, DDC determines if BLESS should connect
to the device, and if the policy allows, DDC commands BLESS
to initiate the connection request command. Once connection
is established, BLESS confirms it to DDC which then assigns
a unique address for the connected peripheral device (refer to
Section III-A). DDC is also responsible for assigning a unique
address to a newly connected central device. DDC uses the
assigned address of the peripheral device and instructs one or
more (appropriate) BLESS nodes to advertise on behalf of the
peripheral device using the captured advertising data.

Service Discovery and Access Policy (SDAP): This
application is responsible for discovering services offered
by each peripheral device connected to a BLESS. In BLE,
service is expressed in terms of attribute type or UUID and
the associated device specific handle for it. SDAP builds a
Handle-UUID map table for each peripheral device. After the
establishment of a connection with a peripheral device, SDAP
initiates back and forth exchanges of multiple ATT request-

response packets (e.g., Find information request/response) be-
tween the peripheral device and BLESS. Such exchange results
in a Handle-UUID map table for the peripheral device. For
any declaration type UUID, SDAP retrieves its corresponding
value. This enables the controller to learn the services offered
by the device. In addition, based on this table and the user
provided access policy, the controller can insert appropriate
flow rules in the match-action table of BLESS. When a
peripheral device is disconnected from BLESS, SDAP destroys
the Handle-UUID map table.

C. Data Plane Operations

BLESS’s data plane works at the service layer between a
pair of central and peripheral devices, where they act as client
and server, respectively, for the service. The ATT protocol
is used to communicate the services described using GATT
protocol. The GATT server maintains a list of attribute’s where
each entry is described as a key-type-value tuple. A fixed
length attribute’s key, called a handle, is locally unique per
server-client connection. The 16 or 128 bit type field, called
attribute type (UUID), is defined mostly by Bluetooth SIG [9].
The value field, called attribute value, can be variable in
length based on the type. Service policy and access control in
BLESS is defined (statically) in terms of attribute type. Rules
are instantiated in terms of the (ephemeral) handles translated
from the attribute type using the Handle-UUID map table.

BLESS uses a number of BLE packet fields and metadata
(see Fig. 2) for the match-action rules. The metadata is
generated at a local BLESS, and is carried along with the
packet to a remote BLESS. The fields in BLE_packet appears
in all packets. We augment it with metadata which contains
relevant lower layer information like source device address
(SID), destination device address (DID), packet’s input port
(in_port). The in_port can be a normal port or external
port based on whether the packet is local to the BLESS
or delivered from a remote one, respectively. The enable
and counter fields are used for (re)matching the same ATT
command packet multiple times through the match-action rules
when the command requires checking more than one attribute
types or values (e.g., Read by type request/response).

ATT protocol supports three categories of commands: read
attributes, write attributes and attribute notification. As a
data plane operation, BLESS applies match-action rules on
these commands to enforce different access policies. We keep
match-action rules stateless for all the ATT commands, and
maintain the connection’s state at the forwarding path (ports).
Note that different ATT commands have different packet
formats and can have different match fields. While all the
ATT commands can be implemented as match-action rules,
we briefly describe one popular command from each class in
the following.

Read Attributes: The Read request/Read response ATT
command pair allows a client to read attribute’s value from
a server using attribute’s handle. The Read request packet
contains the attribute handle which, along with a few other
fields (see Fig. 3), is used by BLESS for finding a matching

field BLE packet metadata({

fields BLE_packet{ SID .48

12cap_CID :16;

i DID 148;
Length 1 o in_port :16;
ATT_opcode :8; enable :8 /*initial value 1%/

} counter :8 /*initial value 0*/

}

Fig. 2: Packet fields and metadata used for match-action rules.

Actions

Malching fields

‘SID‘DID‘ATT_opcode=DxDA (i.e., Read Request) ‘Handle‘ Block/ Forward ‘

Read
Tequest-response

‘s:[D‘DID‘ATT_opcode:OxOE (i.e., Read Response) ‘ATT_value‘ Forward ‘

DID ATT_opcode=0x12

(i.e., Write Request)

Handle |ATT value Block /Controller,

SID
Forward /Forward

Write
qf P!

‘SID‘ DID‘ ATT_opcode=0x13 (i.e., Write Response) ‘ Forward ‘

Forward ‘ }
Fig. 3: Match-action rules for different ATT commands.

‘sm ‘nm‘ ATT opcode=0x1B (i.e,Notification) ‘ Handle ‘

rule. Recall that the match-action rule contains the handle
corresponding to the attribute type or UUID from the Handle-
UUID mapping table. As an action, BLESS can either forward
or block the Read request packet. In case of blocking, BLESS
sends an ATT Error response packet to the client with the ATT
error code "Read Not Permitted”. The Read response packet
is forwarded to the client.

Write Attributes: The Write request/Write response com-
mand pair allows a client to write a single attribute value at the
server based on the handle information. When a request packet
passes through BLESS, based on the handle information,
BLESS either blocks or forwards the packet. The response
packet is simply forwarded to the destination. There is a spe-
cial case of write request when a client subscribes to a service
attribute for notification from the server. In this case, the client
first sends a write request with the attribute handle and value
information to the server. If the attribute handle corresponds
to a service attribute of type client characteristic configuration
(i.e., 0x2902), then, in addition to forward the request packet
to the server, BLESS applies action (i.e., controller) to
send the packet to the controller as “packet in” message. This
allow controller to create the set of client devices, referred
to as Notify-Set, that subscribes to the notification for the
corresponding service attribute.

Attribute Notification: This is a server initiated ATT
command that sends attribute notification to the subscribed
clients. In our model, a server sends only one notification
packet for an attribute value as it connects to only one BLESS
acting as a central device’s client. It is the responsibility of the
controller to push rules in the BLESS nodes to multicast the
notification packet to each client in Notify-Set.

Besides the above mentioned actions, BLESS also uses
a few more to handle more involved ATT commands. For
example, Rematch action is used to match the packet with the
match-action rules repetitively. This is useful for ATT com-
mands that carry a list of attributes. Before rematching, this

action updates metadata fields such as counter' and enable.?
counter is used as an index that increments by one each time Rematch
action is performed on a given packet.
Zenable (1 or 0) indicates whether or not Rematch action can be applied
for the matched rule.

Service
Battery

Heart-rate__—-@

P: Physician
A: Administrative personnel
N1: Nurse for patient one
N2: Nurse for patient two
H1: Heart-rate monitor for patient one
H2: Heart-rate monitor for patient two
T2: Temperature monitor for patient two

B: Battery service Battery | -"| Battery
Hr: Heart-rate service Heart-rate . “«.[Temperature
Tp: Temperature service -
1 1
1 1
_ _HJE_ O L R .___%,_'
B My oo ey Mo S8 |l e)
P HtHe Y o T2.Tp
o Lo Ler]
L m = — T !

Fig. 4: The hospital scenario with BLESS. Dotted rectangles
depict network slices among different groups of BLE devices
and services (represented in solid rectangles).

The RemoveATT Value action removes the matching attribute
values from a packet, and updates the rest of the packet content
accordingly.

IV. EXAMPLE USE CASES

To illustrate the inner workings of BLESS, we use the
network service slicing example described in Section I, where
service slices are created, on which access control is enforced.
Fig. 4 shows the hospital scenario with central and peripheral
devices and their roles. Fig. 4 depicts the GATT services
offered by the peripheral devices. Also shown are several
network service slices created using different devices and
services. As evident, slices can be independent (e.g., Blue and
Red) or overlapping at various services (e.g., Red and Green).
BLESS ensures that each slice is created and maintained in iso-
lation without interrupting any ongoing services. To illustrate
further, consider the blue dotted rectangle representing the
administrative professional’s network service slice composed
of his central device A and the battery services of all the
peripheral devices H1, H2, and T2. BLESS must ensure that
in this slice, device A can only access the battery status
information from the peripheral devices. Fig. 5 shows the
match-action rules needed to apply such service access policy.
Match-action rules are listed in decreasing order of priority
(priorites are needed when a packet matches several rules).

We describe the operation of the slice assuming that the
link layer connections are already set up. There are a few
different ATT commands that A can use to access the service
from the peripheral devices. We describe the steps when Read
request/Read response pair is used between A and H2.

First, B2, physically connected to A, receive Read request
packet to port p5, which directly maps with the port 1p2
at B1. If the packet carries handle = 0x0202 (assume which
corresponds to the attribute of “battery status” in the heart rate
monitor H2), then based on rule () (which has higher priority
than rule @), B2 forwards the packet to port ep2, which

BLESS node: B2

BLESS node: B1

SID: A ‘ DID: H2 ‘ATT_OPCOdE OXOA‘ Handle: 0x0202 ‘Forwax'd: epz‘ ‘ SID: A ‘ DID: H2 ‘ ATT_opcode: O0x0A ‘ Handle: 0x0202 Forward: 1p2 ‘@
SID: A‘DID: HZ‘ATT_opcode: OxOA‘ Handle: (*) ‘Block: 0x0A, (*), 0x03 ‘ ‘SID: H2‘ DID: N1 ‘ ATT_opcode: 0x0B ‘ ATT value: (*) Forward: p2 ‘
SID: H2| DID: A | ATT opcode: 0xOB ATT value: (*) Forward: p5 |s1D: H2| DID: P [ATT opcode: 0x0B | ATT value: (*) Forward: p5 \
SID: H2| DID: N2 ATT:opcode: 0x0B ATT:value: (*) Forward: p2 ‘SID: Hz‘ DID: * ‘ ATT_opcode: 0x0B ‘ ATT_value: (*) Forward: epl ‘

[sID: *[DID: H2[ATT opcode: 0xOA|Handle: 0x0202]Block:0x0A,0x0202,0x03]

[sID: *[DID: H2|[ATT opcode: 0x0A|Handle: 0x0202]Block: 0x0A,0x0202,0x03 | (5)

[sID: * [DID: H2 |ATT opcode: 0x0A| Handle: (*) |[Forward: ep2|

‘ SID: * ‘ DID: H2 ‘ ATT_opcode: 0x0A ‘ Handle: (*) ‘ Forward: lp2 ‘ @

| SID: A | DID: H2 | ATT opcode: 0x08 | ATT_type: 0x2Al9 |Forward: ep2|

‘SID: A‘DID: H2 ‘ATT_opcode: 0x08 ‘ATT_type: (*) ‘ Block:0x08, (*), 0x03 ‘

® EELDOEEEE

[S10: & |pip: B2 |ATT opcode: 0x08 |ATT type: Ox2Al9 _ |Forwara: ipz | (7)

SID:H2 | DID:A | ATT_opcode: |ATT value: Handle: enable: 1 Rematch @
SID: |DID:A| ATT_opcode: | ATT_value: |Handle:0x02 enable: Forward: 0x09 (*) 0x0202
H2 0x09 (*) 02 (*) P5 SID:H2 | DID:A | ATT_opcode: |ATT_value: Handle: enable: 0| Forward:epl @
0x09 (*) 0x0202
Ao H2 A H2 0x0A 0x0202 Read Req
H2 | A | ox0B |
H2 - A ‘ 0x3C ‘ Read Response

Fig. 5: Match-action rules in the BLESS nodes for the service access policies.

ultimately tunnels the packet to B1. At B1 rule (D) triggers
and the packet is forwarded to H2 through port 1p2. Note
that Read request packet from A with any other handle value
triggers rule 2) in B2, which blocks the request from entering
the slice. When H2 replies with Read response packet, the
packet matches rule @ at B1, which forwards the packet to
B2 through port ep1. At B2 the packet matches rule), which
forwards the packet to A through port p5. Rules Q) in B2 and
rules) in B1, restrict the access to the battery status service
from any central device other than A, when Read request/Read
response command pair is used.

Note that device A can also access the service from H2
using other read attribute commands. For example, in case of
Read by type request/Read by type response (i.e., ATT_opcode
= 0x08/0x09), Fig. 5 shows the match-action rules for restrict-
ing A to access only the battery status service from H2 (using
rules) to @ in B2 and rules (7) to 9 in B1). These match-
action rules involve more complex actions such as Rematch
and RemoveATTValue as the command may carry a list of
attributes. The details are not included due to lack of space.

V. PRIOR WORK

IPv6 over BLE [6] has been proposed for wider reachability
of BLE devices across the Internet. However, TCP/IP-based
solutions are not suitable in this environment as BLE’s very
small MTU size significantly degrades TCP/IP protocol perfor-
mance. In a mesh topology, routing becomes far more expen-
sive, and IP-multicasting for notification becomes inefficient
due to time-to-time sleep mode of BLE nodes [10]. Running
BLE’s native service layer (ATT, GATT) over IPv6 introduces
extra burden on the resource contained, low power devices. In
addition, such design choices require changes in BLE’s native
implementation (e.g., BlueZ [11]). In order to preserve BLE’s
native service layer, and at the same time address reachability,
BLE service-IP gateways have been proposed [7], [5], [12],
[13]. In this architecture, a service gateway maintains BLE
connection to a device, and connects to a remote service
agent over the Internet. The gateway translates BLE actions
into a form understood by the service agent, and vice versa.
However, this requires development of special application level
or operating system support (e.g., programming model [5] or
virtualization of BLE device [7]). Similar to BLESS, Bee-
tle [7] has introduced the requirement of flexible and policy
controlled access to services from BLE devices. However,

their solution of virtualizing BLE devices intrinsically requires
application level proxies and content caches at the gateway
device. This is inefficient and does not scalable in dynamic
network environment with intermittent connectivity. Cloud-
based access control approaches [14], [15] offload all policy
decisions to the cloud via IoT gateways. This not only requires
all device-to-device communication to detour via the cloud,
but also fails to support unmodified client applications. In fact,
BLESS does not preclude cloud integration. If needed BLESS
can forward traffic to the cloud with backhaul IP connectivity.

VI. DISCUSSION

In this paper, we make a case for network service slicing in a
large scale BLE-based IoT service deployment, and its broader
implication of dynamic policy and access controls. Towards
that effort, we introduce a “switch node”, called BLESS,
that resides transparently between the link layer connection
of peripheral and central devices, and controls packet flow at
the service layer. In BLE security encryption happens at the
Link Layer, therefore BLESS introduce no additional concern
of “man-in-the-middle” attack. We aim at exploring the chal-
lenges and the design issues of realizing BLESS . In the future,
we intend to report on the feasibility of building BLESS using
P4 [16] paradigm with special focus on construction of optimal
match-action rule set, scalable connection state management
etc., so that overall system performance is maximized in a
large scale deployment with keeping the native BLE security
aspect intact.

REFERENCES

[1]
[2]

“Bluetooth Core Specification Version 4.2, 2014.

C. Gomez et al., “Overview and Evaluation of Bluetooth Low Energy:
An Emerging Low-Power Wireless Technology,” Sensors, 2012.
“Bluetooth SIG 2014 Annual Report,” 2014.

T. Yu et al., “Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the Internet-of-Things,” in ACM Hot-
Nets, 2015.

W. McGrath et al., “Fabryq: Using Phones as Gateways to Prototype
Internet of Things Applications Using Web Scripting,” in ACM SIGCHI,
2015.

J. Nieminen et al., “IPv6 over BLUETOOTH(R) Low Energy,” Internet
Requests for Comments, RFC 7668, October 2015.

A. A. Levy et al., “Beetle: Flexible Communication for Bluetooth Low
Energy,” in ACM MobiSys, 2016.

K. Fawaz et al., “Protecting Privacy of BLE Device Users,” in USENIX
Security, 2016.

“Bluetooth SIG Specification.”

W. Shang et al., “Challenges in IoT Networking via TCP/IP Architec-
ture,” NDN Project, Tech. Rep., 2016.

[3]
[4]

[5]

[6]
[7]
[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]

“BlueZ,” http://www.bluez.org.

M. Andersson, “Use case possibilities with Bluetooth low energy in IoT
applications,” White Paper, 2014.

T. Zachariah et al., “The Internet of Things Has a Gateway Problem,”
in ACM HotMobile, 2015.

“AWS IoT,” https://aws.amazon.com/iot/.

“Cisco Jasper,” https://www.jasper.com.

P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors,” ACM SIGCOMM Computer Communication Review, 2014.

