
Understanding the Intermittent Traffic Pattern of
HTTP Video Streaming over Wireless Networks

(Invited Paper)

Ibrahim Ben Mustafa, Mostafa Uddin, Tamer Nadeem
Old Dominion University

Email: {iben, muddin, nadeem}@cs.odu.edu

Abstract—We are experiencing huge growth of video
streaming traffic, which is creating big challenges for
video providers in guaranteeing a satisfactory level
of viewing experience to end users. Furthermore, the
increase in video streaming demands on mobile devices
over dynamic wireless links is creating another obstacle
toward providing a high quality video service. In order
to overcome most of these challenges, HTTPs adaptive
video streaming technology was introduced, along with
other great features for streaming videos. However, we
found that HTTPs adaptive protocol can still suffer
under certain situations and conditions. Mostly, these
issues are likely experienced when multiple concurrent
players compete over the same bottleneck. Several stud-
ies have proposed a network side solution at the home
gateway or at the cloud aiming to assist the video players
to maximize the viewing experience to all users sharing
the same bottleneck. Although these proposed systems
could provide some enhancements to the video stream-
ing, they are unable to provide fine-grained monitoring
and understanding of the video traffic to apply desire
level of dynamic resource management. Considering the
above issues, in this paper we conduct extensive analysis
of the video traffic of YouTube; the most popular HTTPs
adaptive video player. In our study, we argue that
through a deep understanding and careful analysis of
the HTTPs video traffic, valuable information about
the competing streams can be obtained and could be
utilized in developing a network based solution that
can significantly improve the video QoE and assist the
video players to perform much better.

I. INTRODUCTION

With the exponential proliferation of smartdevices
(i.e., smartphone, tablet, smartTV etc.), and the growth
of entertainment and multimedia application, we are
experiencing prominent increase in videos data traffic
over wireless (i.e., WiFi and cellular) networks. As in-
dicated by some studies, the amount of video traffic of
YouTube and Netflix alone comprise 50% of the total
traffic in the peak hours [1]. Such increase of video

traffic is creating big challenges for video providers in
guaranteeing a satisfactory level of viewing experience
to the end users. In addition to the huge increase
in the resources required to serve more streaming
demands, the unstable nature of wireless links and
the frequent changes in network loads create another
obstacle toward providing a high quality video service.

In order overcome most of the above challenges,
HTTP adaptive video streaming technology was intro-
duced, along with other great features for streaming
videos. When streaming videos over HTTP adaptive
protocol, the video playing rate can be dynamically
and seamlessly adjusted according to the change in
the network condition. Moreover, to prevent a possible
waste in the device and network resources in case that
the user does not watch the entire video, the video
with this protocol is periodically delivered in parts as
the user continues watching. Moreover, the video now
can be cached and delivered from any conventional
HTTP web server and can easily traverse the NAT.
As a result of these features, most of video providers
nowadays such as YouTube, Netflix, and Vimeo have
already adapted this technology in streaming videos.

However, despite the aforementioned features,
practical implementation, represented in today’s com-
mercial players, reveals that viewing quality can still
suffer with this protocol under certain situations and
conditions. For instance, our measurements show that
YouTube app can suffer from several serious issues
that would directly impact the QoE of the end user
including instability in the perceived quality, a long
starting-up time, bandwidth underutilization, and un-
fairness between the users. Mostly these issues are
likely experienced when multiple concurrent players
compete over the same bottleneck due to the in-
termittent traffic generated by streaming protocol as
indicated by several studies [2], [3], [4].

Having multiple users concurrently streaming
videos through the same WiFi access point (at shop-
ping center, coffee shop,..etc), or the same base
station of cellular network is a very common scenario.
Therefore, looking beyond an individual case, and
make the optimization global (over multiple concur-
rent streams) is essential for an efficient streaming
solution. To this end, several studies have proposed
a network side solution at the home gateway or
at the cloud aiming to assist the video players to
maximize the viewing experience to all users sharing
the same bottleneck [5]. Although these proposed
systems could provide some enhancements to the
video streaming, they are unable to provide fine-
grained, scalable and dynamic resource management
policies. More specifically, they lack monitoring and
understanding the video traffic to apply a desired level
of resource management. In addition, many of these
proposed systems work by intercepting the HTTP
requests and responses to collect information about the
the streamed videos. Unfortunately, such monitoring is
no longer valid as most of video providers have been
switching to HTTPS with the goal of preserving their
users’ security and privacy. For instance, YouTube
and Vimeo have already encrypted their traffic, while
Netflix has announced to switch to HTTPs by the end
of 2016 [6].

Considering the above issues, in this paper we
conduct extensive analysis of the video traffic from
one of the most popular HTTP adaptive video player
to answer the following two questions: is there still a
way to assist and optimize the performance of the
commercial video players even with an encrypted
traffic? And, how this can we effectively assist the
video players? In our studies, we argue that through
a deep understanding and careful analysis of the
HTTPs video traffic, valuable information about the
competing streams can be obtained and utilized in
developing a network based solution that can signif-
icantly improve the video QoE and assist the video
players to perform much better.

II. OVERVIEW OF HTTP ADAPTIVE VIDEO

STREAMING

There are several HTTP streaming technologies
that are being widely deployed by the industry in-
cluding Apple HTTP live streaming (HLS), Microsoft
smooth streaming, Adobe HTTP Dynamic Stream-
ing, and Dynamic Adaptive Streaming over HTTP
(DASH). All these technologies follow nearly the

same principle where the original content is processed
into multiple bitrate profiles or versions, and then
these versions are splitting into small segments, where
each segment represents a short duration of playback
time. These segments are made available for down-
loading on a conventional HTTP web server along
with a manifest file, which describes the available
bitrate profiles, the segments URLs, .etc, through
sending a HTTP get request. Prior to the streaming
session, the manifest file is typically provided to the
client, and according to the client device capabilities
and current network condition, the client requests the
best segment version that fits its situation. Therefore,
all the logic and decision is made by the video
player at the client side leaving the server to only
responding to the client requests. In this way, the
client can dynamically adapt to the change in the
network condition by adjusting the video bitrate to
the end-to-end available bandwidth, which can have
a significant enhancement on the performance . For
instance, the video player can request a lower profile
when it encounters a major drop in the available
bandwidth to avoid possible stalls in the playback if it
sticks with the same quality profile. One of the major
challenges in designing the adaptive algorithm of the
video players is the decision of requesting the segment
version that maximizes the viewing experience. In
fact, most of the work that have been done in the
literature tried to enhance the performance of video
players through designing a better adaptive algorithm.

Typically, HTTP video players have two main
states: buffering state, in which the players tries to
fill its buffer with video frames at the beginning of
the streaming session, and steady state, in which the
player starts periodically requesting video chunks after
the buffer is filled up. The adaptive player typically
maintains two thresholds, an upper and lower thresh-
olds. The player pauses downloading video chunks
as soon as the buffer filled and reached to the upper
threshold, and it resumes downloading once the buffer
drops to the lower threshold. Figure 1 illustrates these
two states in which the player starts buffering video
chunks at the beginning of the streaming session, and
when the buffer reaches its max threshold at time 70,
the player goes off and enters the steady state. At time
78, the player goes on again and send a chunk request
to the server when the buffer goes below the minimum
threshold. This behavior recur repeatedly until the
video chunks are fully downloaded. These intermittent
traffic pattern (ON/OFF periods) introduces a major

0 20 40 60 80 100 120 140 160

5000

4000

3000

2000

1000

0

Buffering state

Time(seconds)

K
bp

s

Steady State

Fig. 1: Player state: buffering state and steady state.

challenge for competing video players to accurately
estimate the available bandwidth. This pattern is the
root cause of the degradation in the video quality for
most commercial video players in the market today,
thus it is very important to consider this traffic pattern
in any future solution.

III. EXPERIMENT SETUP

In the experiment, we use a laptop as Wi-Fi Access
Point (Wi-Fi AP) which is running Ubuntu OS. This
Wi-Fi AP is also connected to the internet using
ethernet interface. In the Wi-Fi AP, we installed Open
vSwitch (OVS) [7] and added the wireless interface
(wlan0) of AP as a port with the OVS bridge. Con-
sequently, all the traffic coming or going to any of the
connected smartphones should pass through this OVS.
In addition, we use Linux Traffic Control (tc) [8] of
the Wi-Fi AP to control or limit the bandwidth of the
video traffic. In the experiment setup, we have used
three Android smartphones (two Samsung S5 and one
Nexus 5) which are all connected with the Wi-Fi AP.
In the experiment, we use iperf [9] to generate UDP
traffic as a background traffic. In our smartphones, we
have installed and used the latest version of YouTube
app. This YouTube app comes with a “stats for nerds
option that enable us to observe the quality requested
by each player in addition to the buffer status and the
estimated throughput value.

IV. TRAFFIC AND PERFORMANCE ANALYSIS

In this section, we start analyzing real video traffic
streamed over HTTPs protocol for different network
conditions and scenarios. We divide our analysis into
two main scenarios: non-competing scenarios, where
only one video player is streaming, and competing

scenarios where two or more video players are com-
peting for the bandwidth over the same bottleneck.

A. Non-Competing Scenario

In this scenario we capture and study the traffic
patterns generated by only one video player without
any competition from other players in the wireless
network. We use different videos encoded with differ-
ent bit-rates and streamed from a regular http server.
For the first experiment, we stream a video with 480p
quality resolution which encoded at 650kbps (selected
manually among different available resolutions) with
different bandwidth capacity to see its impact on the
video traffic patterns. Note that, we use the tc tool
in the Wi-Fi AP to control the available bandwidth
of the video player running in smartphone. At the
beginning we allow the video player to stream at
3200kbps, and then we reduce the bandwidth after 27
seconds to 1200kbps for 30 seconds before reducing
it again to 650kbps. As we observe from figure 2,
the duration of OFF period at the steady state shrinks
as the throughput rate drops and getting closer to
the video encoding rates till the OFF periods totally
vanish at the last 30 seconds. Therefore, there is a
strong correlation between the length of the OFF
period and the video streaming and encoding rates.
The existence of the OFF periods clearly indicates that
the playback of the current quality profile is utterly
stable and the likelihood of experiencing degradation
in the viewing quality (e.g, switching to lower quality
or stalling in the playback) is basically not possible as
long as there is no drop in the throughput. On the other
hand, the disappearance of the idle period of video
stream as a result of a drop in the throughput may
indicate either the throughput is equal to (or lightly
above the encoding rate), or below the encoding rate.
In the former case, the video playback operation will
not be affected, while in the latter case, the video
playback may or may not be affected depending on
some factors such as the drop level, buffer condition,
and length of the video. Therefore, it is extremely
important for the performance to distinguish between
these two cases and determine whether the drop in the
bandwidth would affect the playback rate.

One technique for distinguishing between the two
cases mentioned above is to determine the video
average bitrate. Since the video traffic is encrypted,
knowing the exact value of the video bitrate is not pos-
sible. However, the estimated value would be obtained
if we can calculate the average chunk size and divide

K
b

p
s

0 10 20 30 40 50 60 70 80 90
Time(second)

4000

3000

2000

1000

0

Fig. 2: ON/OFF periods correlation with streaming
and encoding rates.

it by the average duration of ON and OFF periods.
In fact, this becomes quite possible with some new
tools and technologies such as OpenvSwitch that allow
for collecting statistical information about the traffic
flows in real time. For example, we see in figure 2 that
At second 57 the throughput drops from 1200kbps to
about 650kbps which completely removes the OFF
periods from the traffic patterns. Now by dividing the
average chunk size (800KB) by the average length of
both ON and OFF periods (10 seconds), the estimated
bitrate will be 650kbps which is slightly above the
actual value(600kbps). Therefore, the drop in this
example can definitely affect the video traffic in long
play, and a well-designed assistant system should react
to prevent such possible degradation in the video view
quality through some techniques discussed in section
V.

Having this situation, it will be more efficient
to estimate the number of seconds in the buffer at
the time of the drop. This is very important for
the performance of the overall streaming system. For
instance, if we know an estimated value of the video
encoding rate and know that the buffer has about x
seconds of video frames at the time of the drop, then
the system can infer when the buffer turns empty
and start harming the viewing quality. In case the
degradation can take long time, we can safely defer
its intervention for quite long time waiting for the
condition to be inherently improved (e.g, wait for one
stream to finish downloading a video). As a matter
of fact, each streaming application has its own setting
for the buffer. For instance, our measurement reveals
that YouTube app on all smartphones uses a 20MB
buffer. This means that at the time of the drop, the
player can continue playing the current quality for
about 20MB divide by the estimated video bitrate.
Thus when the available bandwidth drops below the

0 30 60 90 120 150 180 210 240

Time(seconds)

K
bp

s

Re-buffering

1750

1500

1250

1000

750

500

250

0

360p 480p

T
h

ro
u

g
h

p
u

t
In

cr
ea

se

Fig. 3: Increase in the bandwidth causes a change in
the traffic pattern.

encoding rate, we can have an estimated knowledge
about when the player might switch the quality or be
subjected to playback stalls.

We also identify another scenario that causes the
idle periods to vanish. Figure 3 shows the intermittent
traffic pattern of a video player streaming video of
400kbps bitrate (360p resolution)disappears for con-
siderable period of time when the available bandwidth
increased from 900kbps to 1400kbps. As can be ob-
served from the figure, the increase in the throughput
happen at second 30, and starting from second 68 the
OFF periods are completely disappeared for nearly
140 seconds (persistent pattern) before showing up
again at time 207. This could be interpreted as the
player increases the quality and re-enters buffering
state in which some of the low quality packets in the
buffer are replaced by high quality packets. This con-
clusion can be confirmed by looking at the chunk size
before and after the buffering state. We can clearly see
from figure 3 that the video chunks streamed after the
persistent period is much larger in size than the chunks
streamed before. This change in the average chunk
size is a clear sign of an increase in video quality
as the chunks of a high quality profile typically have
higher bitrate and thus size than the lower quality.
Note that the OFF periods can vanish with no changes
in the throughput, which indicates the client most
likely jumps to time offset in the video playback.

While switching to the higher quality video, the
player flushes all the buffered video packets of lower
quality before starting to re-buffer higher quality
video. Thus frequent switch of video quality causes
a significant waste of resources in mobile devices as

1500

1000

500

0

K
b

p
s

0 5 10 15 20 25 30 35 40
Time(second)

Fig. 4: The traffic pattern of high motion video.

1500

1000

500

0

K
b

p
s

0 5 10 15 20 25 30 35 40
Time(second)

Fig. 5: The traffic pattern of low motion video.

well as increases the overall load on the server. In
addition, such losses of packets over cellular network
can become expensive to the user.

In videos, we see mixture of slow and high motion
clips such as sport games or action movie, where in
other videos, we only see slow motion clips such
as news. Note that, the type of a motion clip in
a video has direct impact on the video encoding
rate. Similarly, the regularity of the ON/OFF period
also depends on the variability of the video encoding
rate. For example, in Figure 4, the first two chunks
of the video is for high motion scenes, and have
higher encoding rates and data size compare to the
following two chunks with slower motion scenes.
Thus the change between the high and slow motion
clips changes the ON/OFF periods to have different
length as in Figure 4. On the other hand, the video
chunks represented in 5 have slow motion scenes with
almost the same encoding rates and date size. Thus,
in this case, we observe no changes in the length of
ON/OFF periods.

B. Competing Scenario

In this section, we start analyzing the video traffic
in more realistic scenarios, where multiple devices
runs video streams with other concurrent flows in
the wireless network.Figure 6 shows the flows pattern
of two devices playing video streams over the same

3500

3000

2500

2000

1500

1000

500

0

K
b

p
s

0 15 30 45 60 75 90 105 120 135 140
Time(second)

Player A
Player B

Fig. 6: Two video Players compete for bandwidth over
the same bottleneck.

wireless AP. In order to ensure that both devices have
exactly the same flow characteristics, we place both
devices at the same distance from the AP and make
the players requesting the same video. In addition, we
generate background traffic in the wireless network
using Iperf running on a third device to mimic real-
life scenario and make the flows compete.

We start one player (player A), and after 30
seconds we start the other player (player B), so at
the beginning the player A achieves high throughput,
around 3200kbps, which enables high quality stream-
ing profile. However, as soon as the competing flow of
player B shows up, the throughput temporally drops to
1700kbps. Figure 6 shows an aggressive competition
between the two flows which results in an extreme
fluctuation in the throughput, as we can see, the player
A is clearly getting much higher throughput in average
than the player B, which is experiencing a very low
throughput. This unfairness in sharing the bandwidth
continues for about two minutes before eventually and
slowly converse to a fair state as a result of using
TCP as the transport protocol. This slow increase in
the throughput of player B has a terrible impact on
the QoE of the client. First, it forces player B to
request low quality for a considerable amount of time.
Second, the slow increase in throughput makes player
B passes through all the quality levels before reaching
to the final quality that fits with the fare portion of the
bandwidth. This multiple switches cause player B to
flush out most the packets from the buffer to replace
them with the higher quality with every increase in
quality. This would cause re-requesting a huge portion
of the video content which can be a very expensive
under certain scenarios.

We also examine the effect of competition between
three players. We start running two players and after

K
b

p
s

0 100 120 140 160 180 200 220 240
Time(second)

3000

2000

1000

0

Fig. 7: The flow of one player competing with two
other players in the wireless network.

K
b

p
s

0 10 20 30 40 50 60 70 80 90 100
Time(second)

2500

2000

1500

1000

500

0

Player A
Player B

Fig. 8: The traffic pattern of two players streaming
different video bitrates while competing over the same
bottleneck.

80 seconds we start the third player. For clarity, figure
7 shows only the flow pattern of the third player.
Similar to previous experiment, we see a slow increase
in the throughput, and the third player also suffers
from obtaining enough bandwidth to buffer its packets
and starts the playback for its first 40 seconds. This
in fact create quite a start-up delay before starting the
playback. Under this circumstance, the user could get
frustrated, and decide not to stream video over the
network. Note that having a short start-up delay time
is one of the most important metrics for the QoE.
Therefore, it is very necessary to have a mechanism
that insures a good performance for all players.

Figure 8 shows the impact of different video bi-
trates on the flow competition between two players,
player A and player B. We disable the Youtube auto
quality selection on both players, and manually set
the quality levels at 720p (130kbps) for player A, and
360p (55kbps)for player B. We start both players at
the same time under the same conditions (i.e., same
video and same distance from Wi-Fi AP). Figure 8
shows that player A with higher bitrate stream wins
the competition and dominates the bandwidth. This

K
b

p
s

140 150 160 170 180 190
Time(second)

2500

2000

1500

1000

500

0

Player A

Player B

Fig. 9: The impact of the wireless link condition on
throughput competition

explains, why player A in the first experiment has
higher throughput than player B which starts later.
The reason is that when player A starts, it gets enough
throughput to request high quality video, while player
B does not find much available bandwidth, thus end
up requesting low quality video.

Typically, the wireless link conditions of different
devices in the same network vary according to dif-
ferent conditions such as their distances from the AP.
Figure 9 shows the result of an experiment in which
we use two devices with different link condition, at
the beginning, we start both players while placing
both devices close to the AP, and then we slowly start
moving one device away from the AP. As a result, the
player of the moved-away device (player B) starts to
observe throughput reduction around time 170s, and
player B also looses the competition against player
A which starts to experiencing higher throughput.
Note that, in this case, we have two causes that are
contributing to the suffering of the video streaming
flow: the link condition and the competition among
the video streaming flows. Although, we have no
control on the former cause, but with smarter network
management we can address the second cause to have
acceptable video streaming experience for all players.

To understand the impact of the intermittent traffic
pattern of HTTPs adaptive streaming protocol on the
QoE, we study and analyze the traffic pattern of
two players at the steady state. Figure 10 shows the
smoothed throughput of these two players. Before
second 350, both players were stable and achieving
good throughputs, but after 350 second, we can ob-
serve a drop in their throughput for about 100 seconds
followed by a dramatic increase in the throughput of
player A and a major drop in throughput for player
B.

K
b

p
s

300 350 400 450 500 550 600
Time(second)

2500

2000

1500

1000

500

0

Player A

Player B

Fig. 10: The smoothed throughput averages of two
video streams at steady state.

To understand why player B looses the competi-
tion, Figure 11 zooms into the first 40 seconds of the
previous figure. This figure shows how both player
were utilizing the off period of each other for the
first 25 seconds, and because of a long OFF period
of player B (between second 315 and 325), player A
experiences a huge increase in the bandwidth during
that period. This increase in the throughput causes
player A to switch to a higher quality profile and
reentering buffering state, while player B looses its
idle periods. Therefore, we can infer that player B
was relaying on the player A’s released bandwidth
(at OFF periods) in maintaining the current quality
level. As a result, both players start fighting again for
bandwidth causing their throughputs to go below their
current video bitrates. Consequently, their buffers start
quickly draining, and because player A can slightly
gain more bandwidth than player B in the competition,
the buffer of player B get drained before player A.
This causes player B to switch down three quality
level at one time (from 720p resolution, encoded at
1200kbps, to 240p encoded at 400kbps as confirmed
by examining the change in the player’s playback
resolution) in order to prevent stalls in the playback.
This experiment highlights one main problem raised
from the intermittent traffic pattern of HTTP adaptive
players and confirms the need of a mechanism to
enhance the performance.

V. DISCUSSION

In previous sections, we show how to analyze and
obtain some useful information about the HTTP video
flows. In addition, we highlighted some performance
issues with commercial players regarding concurrent
video stream over the shared wireless network. As
confirmed by our experiments, most of these issues
are mainly caused by the aggressive competition be-

K
b

p
s

305 315 325 335 345
Time(second)

4000

3000

2000

1000

0

Player A
Player B

Fig. 11: The throughput competition of two flows at
steady state.

tween the players for the available network resources.
Therefore, any future effort that aims to enhance the
performance of video players and the viewing quality
for all clients, should concentrate on mitigating this
competition in such away that ensures the fairness
among the player and, maximizes the utilization of
the available bandwidth.

One possible technique, for instance, is to monitor
and control the bandwidth utilized by each stream
at the network edge. Each time a new stream joins
the network, the system should instantly react and
reallocate a fair portion of the bandwidth to the new
stream. This technique might require reallocating the
bandwidth, and distributing it again among all players.
However, to avoid major degradation in the quality
of the existing (old) players, the system should be
aware of the conditions and status of all players and
the characteristics of their flows before performing
bandwidth reallocation. As we discussed in section
IV A, the condition of the player can be estimated
from the characteristic of its flow, thus we can use
these in taking the bandwidth allocation decision.

Consider the scenario in figure 12, where two video
streams are in the steady state. Assume a new video
stream joins in with the previous two video streams.
In the Figure 12, it is clear from the length of the OFF
period and the size of video chunks that the player B is
streaming at a much higher rate than its video average
bitrate. When, cutting as much as half of the allocated
bandwidth from the player B will not harm the QoE of
its user, while cutting the same portion from the player
A is likely to cause major degradation in its quality.
Therefore, a well-designed system should reallocate
the network resource based on the current condition
of all video streaming flow in the network in order to
maximize the overall QoE of all users.

1500

1000

500

0

K
b

p
s

0 15 30 45 60 75 90 105 120 135
140 Time(second)

Player A
Player B

Fig. 12: Video stream flows of two video Players at
steady state.

Generally speaking, different factors such as
startup delay time, playback stalls, quality of the
image, .etc, have different impact on the QoE. For
instance, stalls in the playback has far more negative
impacts on the QoE than reducing the quality one
level. Therefore, it is important to consider the impact
degree of these factors on the QoE for different clients
when reallocating the bandwidth. For example, con-
sidering a scenario where we have two video streams;
one is in steady state, and another is in buffering
state. Assume at this moment, a new video stream
joins the other two video streams. This would require
reducing the available bandwidth for both existing
streams to allocate some for the new comer. In this
circumstance, however, it is better to reallocate some
bandwidth from the steady-state video stream to the
new video stream and keep the bandwidth at the
same level for the buffering-state stream. Because,
according to our analysis from previous sections, it
is more likely that the steady-state video stream has
more buffered video chunks to playback compared to
the buffered-state video stream. Therefore, reducing
the bandwidth for the steady-state stream may result,
in the worst case, in reducing the quality level. On the
other hand, reducing the bandwidth for the buffering-
state video stream can lead to non-acceptable stalls
in the playback. Our experiments shows that the main
cause of such stalls with the commercial players is the
use of weighted average in estimating the throughput
instead of using the instantaneous value. One reason
of using this technique is to minimize the impact of
outliers resulting from the temporary drop or raise in
the bandwidth.

VI. CONCLUSION

In this paper, we have conducted extensive analysis
of the video traffic from popular HTTPs adaptive

video player (YouTube). Initially, we have analyzed
the video streaming traffic of non-competing scenar-
ios, where we wanted to understand how the HTTPs
adaptive video player behaves under different network
conditions. Furthermore, we have analyzed multiple
concurrent video streaming traffic for competing sce-
narios, where two or more video players are compet-
ing for the shared bandwidth. This study enables us
to understand the unfairness in sharing the bandwidth
among the players, and the its impact on the QoE.
Finally, based on the analysis of video streaming
flows, we have discussed how to enhance the video
QoE and assist the video players to perform much
better for all clients.

REFERENCES

[1] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari, “Confused, timid, and unstable: picking a video
streaming rate is hard,” in Proceedings of the 2012 ACM
conference on Internet measurement conference. ACM,
2012, pp. 225–238.

[2] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, effi-
ciency, and stability in http-based adaptive video streaming
with festive,” in Proceedings of the 8th international confer-
ence on Emerging networking experiments and technologies.
ACM, 2012, pp. 97–108.

[3] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Be-
gen, “Server-based traffic shaping for stabilizing oscillating
adaptive streaming players,” in Proceeding of the 23rd ACM
Workshop on Network and Operating Systems Support for
Digital Audio and Video. ACM, 2013, pp. 19–24.

[4] M. A. Hoque, M. Siekkinen, J. K. Nurminen, M. Aalto,
and S. Tarkoma, “Mobile multimedia streaming techniques:
Qoe and energy saving perspective,” Pervasive and Mobile
Computing, vol. 16, pp. 96–114, 2015.

[5] R. Houdaille and S. Gouache, “Shaping http adaptive streams
for a better user experience,” in Proceedings of the 3rd
Multimedia Systems Conference. ACM, 2012, pp. 1–9.

[6] “Most internet traffic will be encrypted by year end. here’s
why.”

[7] A. Unknown, “Open vswitch, an open virtual switch,” Date
Unknown but prior to Dec, vol. 30, p. 2, 2010.

[8] I. Delchev, “Linux traffic control,” in Networks and Dis-
tributed Systems Seminar, International University Bremen,
Spring, 2006.

[9] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs,
“Iperf: The tcp/udp bandwidth measurement tool,” htt
p://dast. nlanr. net/Projects, 2005.

