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Abstract—Mobile devices such as smartphones have a num-
ber of sensors that can be exploited to solve a number of
problems related to health care delivery. In this paper we
use accelerometer, gyroscope, and compass sensors on smart-
phones to solve a location tracking problem common to many
emergency departments. An emergency department typically
has unique characteristics including not being friendly to be
visually surveyed, since the layout consists of many isolated
islands and the workstation layout is not standardized. The
spaghetti diagram is a tool to help to identify areas where time
can be saved by visualizing unnecessary movement of products,
staff or patients. We report the development of an automated
tool to create spaghetti diagrams of movements of personnel in
a non-intrusive way. A preliminary prototype to produce paths
showed very encouraging results. We also identify challenges
and our approach to meet them.

Keywords-Mobile Health, Spaghetti Diagram, Inertia Sensor,
Indoor Tracking.

I. INTRODUCTION

Delivering high quality, economically-efficient healthcare
is rapidly becoming one of the key economic, societal
and scientific challenges in the United States as well as
globally. Therefore, several federal government agencies
recently focused on accelerating the development and use of
innovative approaches that would support the much needed
transformation of our healthcare system. For example, the
need for significant healthcare transformation was recog-
nized by numerous organizations including the President’s
Council of Advisors on Science and Technology (PCAST),
National Research Council (NRC), Institute of Medicine
(IOM), Computing Community Consortium (CCC), and
the National Academy of Engineering [1]. To facilitate
the transformation, there have been continuous efforts to
advance computing research in healthcare, by enabling col-
laboration among cross-community that includes biomedical
informatics, computer science, clinical medicine and public
health [1].

Improving the quality and the efficiency of the health-
care system requires new management systems. Many lead-
ing healthcare institutions, therefore, follow a management
approach called Lean, which is a quality improvement
philosophy based on the Toyota Production System that
processes to maximize customer value while minimizing the
waste. Recent studies [9], [10] show that adoption of lean

management helps healthcare organizations to improve their
process and outcomes, reduce costs, and increase satisfaction
among patients, providers, and staff. One of the fundamental
concepts of lean management is to exploit the resources
(e.g., lab equipment, medicine, time, money, staff, etc.)
efficiently. In this paper, our focus is to identify opportunities
and directions, where we can exploit smart devices (i.e.
smartphone, smart gadget etc.) to improve Lean – healthcare
management.

Like other industries, the healthcare industry is experi-
encing the effects of smartphones. Indeed, healthcare may
be among those industries where the impact has been most
profound. One market research firm estimates that 81% of
US physicians in 2012 use smartphones [2]. In another
study, 85% of medical providers working in Accreditation
Council for Graduate Medical Education training programs
reported use of smartphones [3]. A recent study on the role
of smartphones in medicine [4], shows that the amount of
research in the use of smartphones in medicine is rapidly
growing and smartphones have a very bright future in the
world of medicine, where doctors, engineers, and others
alike continue to contribute more ingenuity to this dynamic
field. Given the numerous ways in which the smartphone
can be utilized in healthcare, we believe that smartphones
will become diagnostic and therapeutic tools that are as
irreplaceable as the stethoscope has been in the practice of
medicine.

Other than smartphones, research firms such as ABI Re-
search anticipates that by 2016 there will be more than 100
million wearable health-related devices sales annually [5].
They also projected 80 million wearable sports and fitness
related monitoring devices sales by 2016 [6]. The availability
of new inexpensive smart gadgets that monitor your health
and fitness will range from heart monitors to biosensors that
read body temperature and motion.

We envision that Lean management systems will leverages
the potentiality of smartphones, smart gadgets, wearable
devices. As an example, in this paper we focused on
using smartphone technology to facilitate the creation of
an important Lean management tool called a ”Spaghetti
Diagram.” As a part of our goal, we want to leverage the
smartphone’s inertia sensors (i.e accelerometer, gyroscope,
magnetic sensor, etc.) to generate a Spaghetti Diagram in



an automated, low cost, low overhead, and transparent way.
In section 2, we describe more details about the Spaghetti
Diagram tool.

II. BACKGROUND

A. Spaghetti Diagram

The spaghetti diagram is a tool to help establish the
optimum layout for a department or ward based on obser-
vations of the distances traveled by patients, staff and/or
products (e.g., x-rays). Spaghetti diagrams expose inefficient
layouts and identify large distances traveled between key
steps. This tool helps to identify areas where time can be
saved by visualizing unnecessary movement of products,
staff or patients. The time saved can be used more effectively
to provide value and therefore can help to reduce delays,
increase efficiency and productivity and thus improve patient
care. The spaghetti diagram is actually a simple value
stream-mapping tool for ”Lean Process Improvement” [9].

Figure 1: Laboratory inside Hospital (source: Wikipedia).

Figure 2: Spaghetti Diagram.

Currently, the spaghetti diagram is created manually in
which the movements of the staff member or patient are
visually observed, and then, are manually drawn as lines on
the layout diagram of the area under concern. This traditional
way suffers from several challenges including: i) the layout
of some areas (e.g., the emergency department (ED)) is not
friendly to be visually surveyed; ii) the layout consists of
many isolated islands; and iii) the workstation layout is not
standardized.

B. Indoor Tracking or Localization

There have been numerous studies on indoor localization/-
tracking that leverage the signal strength of an RF signal
from different nearby RF sources or infrastructures (e.g.,
WiFi Access point, Cellular Tower) [13], [12], [11], [7].
These RF based schemes accompanied with sophisticated
localization algorithms could achieve accuracy with an error
of 6-8m, which is insufficient for our scenario of generating
the spaghetti diagram in an ED environment. Moreover, such
indoor localization system require additional infrastructure
support which is an overhead to the existing management
system. Therefore, unlike the existing indoor localization or
tracking system we wanted to leverage the commonly used
smartphones and already existing infrastructure to generate
the spaghetti diagram.

III. SMARTSPAGHETTI SYSTEM

In the SmartSpaghetti system, we utilize the smartphones
carried by physicians and staff members to detect and track
their movements and map these movements to flow paths.
More specifically, the human movement path can be modeled
and segmented into units of strides and turns as shown in
Figure 4. In our system, we utilized the smartphones sensors
such as accelerometer, gyroscope, and compass sensors to
track the human movement path regardless of the orientation
or position of the phone.

Figure 4: Human Movement Path Model.

We can summarize the overall flow of our SmartSpaghetti
system in the following main steps:
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Figure 3: System architecture.

• Collect sensor readings from the individuals smart-
phone.

• Process the collected data to extract movement in-
formation such as strides, directions, and pauses of
individuals.

• Generate the Spaghetti Diagram by drawing the corre-
sponding movement paths on the map layout.

A. SmartSpaghetti: Architecture & Approach

Figure 3 shows the architecture of our SmartSpaghetti
system. The whole system has mainly two functionalities,
the first is to estimate the number of strides, and the second
is to determine the angle of a user’s turn. In both processes,
we utilize a number of sensors on the smartphone. In the
system, we apply signal processing (i.e. low pass, high pass
filter), pattern recognition (i.e. Dynamic Time Wrapping [14]
Algorithm), sensor fusion, and machine learning/classifier on
the raw sensor data to detect the user’s stride and the angle
of turn.

In detecting a user’s strides, we apply a Dynamic Time
Wrapping (DTW) [14] algorithm on the raw accelerometer
sensor readings to find out a stride pattern. Before applying
the DTW algorithm, we apply low pass filter on the sensor
readings to reduce the impact of high frequency noises. On
the other hand, we use the phone’s gyroscope, orientation
and magnetic sensor to detect the angle of a user’s turn
movements. Initially, we use a sensor fusion technique to
calibrate the sensor readings, then we applied a machine
learning technique to classify or map the change of sensor
readings to a certain angle of movement of the user.

Figure 5 shows the corresponding raw data from the
accelerometer sensor versus time (tenth of a second) for a
walking individual while the smartphone is in her pocket.
From this raw data, we can detect the taken number of
strides as well as the corresponding time. Similarly, the
orientation/compass sensor is utilized. Figure 6 shows an
example of the collected raw data and the corresponding
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Figure 5: Accelerometer sensor raw data with detected steps.

information.

IV. PRELIMINARY PROTOTYPE & EXPERIMENTS

We ran a set of preliminary experiments at both Old
Dominion University (ODU) and the Childrens Hospital of
The Kings Daughters (CHKD) as a proof-of-concept of our
scheme. In the following, we show the performance of the
preliminary implementation of our scheme.

A. ODU Experiments

Figure 7 shows the first experiment at ODU. In this
experiment, the user, while the phone is in her pocket, moved
along a square area shown as a black solid line in the
figure. The estimated path by our implementation prototype
is shown as a sequence of small red squares. As shown in the
figure, the detected path matches the actual path with very
high accuracy. Similarly, Figure 8 shows another experiment
with a different moving path.

Figure 9 shows results of another experiment at ODU. In
this experiment, we tracked the movement of the user while
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Figure 6: Interpretation of orientation sensor raw data.

Figure 7: Walking experiment at ODU.

he walked across the 3rd floor of the Computer Science
Building. As shown, the estimated path (shown in red)
matches the steps taken by the user.

B. CHKD Experiments

Figure 10 shows a portion of the Emergency Department
on the first floor at CHKD where we conducted two prelim-
inary experiments. The path of the first experiment is within
the red oval while the path of the second experiment is show
in the blue circle. In the following, we show the results of
these two experiments.

Figure 11 shows the results of the first experiment. Two
users, each with the phone in their pocket, walked together
from the Start point to the Stop inside the destination room.
As shown, both the estimated paths (shown as the red and
pink paths) match the actual path (shown as the green path)
taken by the users.

Figure 12 shows the results of the Second experiment. In

Figure 8: Second walking experiment at ODU.

Figure 9: Movement tracking experiment at ODU.

this experiment, a single user moved along a certain path in
which he paused at three stops along his walk marked with
small blue squares. As shown in the figure, the estimated
path (shown as the red path) matches the actual path (shown
as the green path). In addition, the exact time of the pauses
taken by the user were measured and shown on the graph as
well (i.e., 10 sec, 7.8 sec, and 2.7 sec). It is noteworthy that
our system not only accurately captured the path, but also
automatically captured the time spent at a location, which
would be very laborious to capture from a videotape review.

V. DISCUSSION

Throughout the different experiments, we found that de-
tecting the user stride from the raw sensor reading is not
that challenging. However, to convert the number of strides
to the actual distance traveled by the user is a challenging
task. In order to address this challenge, we need to map a



Figure 10: Part of Floor plan at CHKD with paths.
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Figure 11: Movement tracking of the first experiment at
CHKD.

stride to a distance, which is called stride length. The stride
length varies from user to user based on their height and
weight. Even for the same user stride length can vary with
the speed of walking. There are existing model that map
user stride length with the user’s height, weight, and speed
of movement. In future we would like to to apply these
models to improve the accuracy of the spaghetti diagram.

Detecting the angle of a user’s turn, regardless of the
orientation and the position of the smartphone, is an-
other challenging problem. The smartphone has its own
co-ordinate system that is totally different from our own
world co-ordinate system of North-East-Gravity. In addition,
the human walking also has a separate coordinate system
that represents the Forward Direction-Side-Gravity. Now,
our main objective is to find the relative rotation/turn of
the user’s movement with respect to the human’s walking
coordinate system. In the future, we wanted to exploit the
inertia sensor of the smartphone to detect the user’s turn by
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Figure 12: Movement tracking of the second experiment at
CHKD.

leveraging these different coordinate systems.

VI. CONCLUSION & FUTURE WORK

In this paper, we showed that smartphones can be used
in an automated, non-intrusive manner to generate spaghetti
diagrams for a hospitals emergency department. This paper
only reports on the results of experiments with a preliminary
prototype and a number of challenges remain in order to
create a highly accurate system implementation. Among
these challenges are the following:

• The system has to be user and device independent such
that no training is required either for a new user or a
new device.

• The system has to be independent of the smartphones
orientation/position.

• To enhance system accuracy, several error correction
schemes could be applied:

– Ideal paths: Know all possible paths ahead of time
and select the best path among all possible paths.

– Confirm location as the user moves through other
detection or orientation systems, such as:
∗ Fusing with other technologies:
· (WiFi [7], Sound [8], and Bluetooth)
· A WiFi Cisco infrastructure is deployed at

CHKD.
∗ Use of anchor points.
∗ Enhanced machine learning scheme for estimat-

ing location.
Once surmounted, this smartphone application can be

used to help improve the layout and efficiency of healthcare
operations. In addition, this type of smartphone application
could be applied in a wide range of industries to improve
their understanding of how work is conducted and how it
can be improved to increase productivity.
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