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ABSTRACT

In this paper we present the design and the evaluation of a frame-
work MagnoTricorder, a system that utilizes the magnetic sensor
in smartphones to detect the running devices at home thru a single-
point sensing. MagnoTricorder leverages the effect of Electro Mag-
netic Interference (EMI) generated by the AC current in the main
power-line at home. This EMI induces a magnetic field that highly
fluctuates the reading of the magnetic sensor in smartphones. In
this paper, we utilize this characteristic for detecting and identi-
fying the running devices at home thru the Circuit Breaker Panel.
Experimental evaluation demonstrates the feasibility of the devel-
oped framework. Results show that MangoTricorder can detect and
identify individual devices with 93%-98% accuracy.

1. INTRODUCTION

Smart Home is becoming a hot area of research for both academic
and industrial researchers. Proliferation of smart devices such as
smartphones, laptops, PCs, tablets, sensors, etc., accompanied with
deployed wireless networks at homes open up the vision of having
smart home as reality. In Smart Home, sensing the status of home
devices (e.g., home appliances) is a corner stone for having better
control over the home appliances as well as power consumption. In
the rest of this paper, we use the term "device" to refer to any types
of electrical device at home including home appliances, computing
devices, non-computing devices, etc.

Industries have provided numbers of smart home applications to
monitor and control the home devices using smartphones. How-
ever, these applications need expensive and cumbersome deploy-
ment and configuration of sensors and wireless networks [10, 1, 2,
3,7,8,12, 6, 9]. Consequently, these applications become unattrac-
tive to users and become very limited in usage. On the other hand,
nowadays smartphones come with a growing number of embedded
sensors. Utilizing several of these sensors, such as magnetic sensor,
light, microphone, temperature, camera, WiFi, in smartphones is
becoming a new paradigm of research for smart home applications.
In [13, 14], we proposed a platform to exploit the multiple sensing
modalities of smartphones to detect the running devices at homes.
In this work, as a proof of concept, we exploited the sound sensing
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capability of the smartphone to detect and monitor the running de-
vices in user’s vicinity. As a continuation of our efforts in building
multi-sensing system, we explore and evaluate, in this paper, the
feasibility of using the magnetic sensor in smartphones in detecting
and identifying running devices thru a single-point sensing.

The magnetic sensing capability, as we will show later, allow us
to develop several interesting applications for typical home usage
scenarios. A very common usage scenario is checking whether any
home device is on before leaving the house or the apartment. In
this scenario, users are interested in checking on devices such as
Heater/AC, kitchen oven/stove, microwave oven, lights, etc., that
should be off while they are not home. Checking such devices be-
fore leaving home is important for both safety and power saving. In
order to simplify this process, we are develop and evaluate a simple
framework; MagnoTricoder that exploits the magnetic sensor in
smartphones to detect and identify any running home device by
using a single-point sensing. A typical example of MagnoTricoder
application usage can be the following: Before leaving home, Bob
wants to make sure all devices are turned off properly. Instead of
checking all the home devices, Bob can run the MagnoTricorder
application in his smartphone while he is holding it near the Circuit
Breaker Panel (CBP) for a few seconds. As a result, the MagnoTri-
corder application will inform Bob about which home device is still
on.

In summary, the contributions of this paper are as follow:

o We introduce the idea of using the magnetic sensor in nowa-
days smartphones to detect the running devices at homes.

o We identify and address the challenges of using the smart-
phone’s magnetic sensor in detecting devices.

o We design and evaluate a simple framework for smartphone
application to detect and identify the running devices at homes
using a single-point sensing.

2. BACKGROUND AND OVERVIEW

In our previous work [13, 14], we proposed a multi-sensing system
that exploits various sensing modalities in smartphones to build
a unique fingerprint profile for each individual running device in
order to detect, identify and monitor these devices. In building the
fingerprint profiles, the characteristics of each device (e.g., sound
characteristics, light characteristics, etc.) are collected and ana-
lyzed to identify the unique features and the corresponding sen-
sors that could be used to detect and identify the device. As a
proof of concept, we have exploited only the microphone sensor



Data Collection

Feature Extraction &
Selection

Classification bi

Frequency
Domain
. / Features w S
Preprocessing Extraction o2 Classifier Identified
Magnetic N—— EE Model —— Running
sensor TS Machin
Data — e ﬁ achines
\ Time Domain
Extraction
N——
9(a) 9(b)

Figure 1: (a) Collecting magnetic sensor reading using Nexus S phone. (b) Operational block diagram of our smartphone application.

of the smartphones in building sound profile for each individual
device. Unfortunately, sound sensing has several limitations. One
significant limitation is that sound sensing is not able to detect
devices that do not generate sound such as laptop, light, kitchen
oven, etc. Another important limitation is the device proximity
requirement for high detection accuracy. In this paper, we are
aiming to overcome the sound sensing limitations by exploring and
evaluating the magnetic sensing capability of the smartphones. The
magnetic sensor of the smartphones measures the direction of the
Earth’s magnetic field that is typically utilized by the smartphone
compass and navigation applications to determine directions.

In this paper, we develop a framework, MagnoTricorder that lever-
ages the effect of Electro Magnetic Interference (EMI) that is gen-
erated by the AC current flowing thru the home main power-line.
The flow of the conducting AC current in the main power-line
depends mainly on the load of the running devices at home. The
more the AC current flows in the main power-line, the higher the
generated EMI around the power-line wire. This EMI induces a
magnetic field that highly fluctuates the reading of the magnetic
sensor in smartphones. One way to observe this phenomenon is
by bringing the smartphone close to the CBP, the magnetic sensor
readings start to fluctuate. The variation of this fluctuation depends
on the type of running devices at home. Figure 2, shows how the
magnetic sensor readings in Nexus S phone differs for different
devices. In this paper, we utilize this phenomenon for detecting and
identifying the running devices at home thru a single-point sensing;
the CBP. The CBP has fairly common standard according to the
National Electric Code (NEC) for all residential places in north
america. The NEC, which is adapted by most buildings in USA,
recommends to place the CBP in a clear, easily accessible and
safe place inside the house. Placing the CBP at easily accessible
area in the house (e.g., near the entrance) make it a suitable place
of single-point sensing for detecting the operating devices before
leaving home.

MagnoTricorder framework entails a number of research challenges.

The first challenge is the use of a very narrow bandwidth low-
pass filter to reduce the EMI effect of the surrounding environment
on the magnetic sensor in order to have stable compass readings.
More specifically, the narrow bandwidth low-pass filter makes the
magnetic sensor in smartphones less sensitive to high frequency
interference. Given the use of the high frequency (i.e., 60Hz) for
the AC current in US, the magnetic sensor in smartphones is not
sensible enough to detect the EMI effect around 60Hz frequency.

The second challenge is the effect of the smartphone’s orientation
on the magnetic sensor reading. As shown later, it is important in
the features selection component of MagnoTricorder to select ori-
entation invariant features that are less sensitive to the smartphone’s
orientation. In this paper we have addressed these challenges and
consolidate the implementation of our application.

3. MAGNOTRICODER FRAMEWORK

Figure 2(b) shows the main components of MagnoTricoder frame-
work. The first component of the system is the Data Collection that
is responsible to collect and preprocess the raw magnetic sensing
data from the smartphone. Next, the processed data is fed to the
Feature Extraction & Selection component in which we apply our
feature extraction techniques to extract the useful set of features.
Finally, in the Classification component, we apply training algo-
rithms to build a classification model based on the extracted fea-
tures from the training data. Using a collected testing data, we test
and evaluate the developed classification model. In the following
subsections, we describe in details each of these components.

3.1 Data Collection

In this paper, we use Nexus S phone for our data collection. Nexus
S uses the AK8973 3-axis Magnetic field sensor chip. During
the data collection period, we place the phone on top of the CBP
surface as shown in figure 2(a). We collect the magnetic sensor
readings along with the corresponding timestamps for over 3 days
period. We change the orientation and the position of the phone on
the surface of the CBP in each day so that we can analyze the effect
of the orientation and the position of the phone on the detection
accuracy.

We split the collected data to two sets; training data and testing
data. The training data is used in developing and training the clas-
sification model, while the testing data is used to test and evaluate
the model. In collecting the data, we start with turning off all
the devices at home and get the magnetic sensor readings as the
baseline load (no running device). Then, we turn the devices in
sequence in order to collect the magnetic sensor readings for each
device. We repeat this controlled experiment over each day to
collect the magnetic sensing data for each device multiple times.

Over the three days period, we collected 15-20 minutes of the 3-
axis magnetic sensor data in total for each individual running de-
vice with 118 samples per second. We collected the sensor data
for the following scenarios: 1) Heater On, 2) Heater Paused, 3) Air
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Figure 2: Magnetic sensor readings from Nexus S phone over a period of time. X-axis represents the number of samples over a
continuous period of time. We have collected 118 samples per second. Y-axis represents the square root sum of three-axis magnetic

sensor reading from Nexus S phone.

Conditioner On, 4) Oven On, 5) Microwave On, 6) Light On, 7)
Laptop Charged (is plugged in the power socket), and 8) All Off
(baseline load where no device is on).

3.2 Feature Extraction & Selection

In this component we have two main goals to achieve: i) the se-
lected set of features should be able to differentiate between dif-
ferent devices with high success ratio, and ii) the selected set of
features should not be sensitive to the smartphone’s orientation.
Our selected features consist of one time-domain feature and nine
other frequency-domain features. In this section, we describe in
details the steps we followed to extract and select the useful features
from the processed magnetic sensor data.

Before extracting the features, we split the processed magnetic sen-
sor data samples (training data) into a sequence of non-overlapped
five-second periods. In this paper we refer to each five-second
period of collected samples as an epoch. We apply our feature
extraction process on each epoch to get the final set of features.
For each epoch, we have a total of 118*5=590 samples in which
each sample is a combination of the raw 3-axis magnetic sensor
reading in the form of \/x2 4 y2 + 22. Next, we calculate the
samples mean and the variance for each epoch. Figure 3 shows
how different machines are quite distinguishable with respect to
the calculated means and the variances of multiple epochs.

By examining the calculated means, we found out that these values
are highly dependent on both the orientation and the distance of the
smartphone with respect to CBP. On the other hand, the variance
values are not sensitive to the smartphone’s orientation but sensitive
to the distance to the CBP. The further we take the smartphone away
from the CBP, the lower the variance values. In addition, we also
observed that the actual position of the smartphone on CBP cover
has some effects on the magnetic sensor readings. Although we
only consider the position of the smartphone in this paper to be
placed at the center of the CBP cover, we plan to study in future
how the position of the smartphone affects the feature selection
component. In this paper, we select the variance of the magnetic
sensor readings as one of our potential features.

To explore other possible features, we apply the Fast Fourier Trans-
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Figure 3: The mean and the variance values of the magnetic
sensor readings for different devices.

form (FFT) on the samples of each epoch to get the frequency
spectrum of the samples in the frequency domain. Figure 4(a)
shows the power (| FF'T|?) values at different frequencies for dif-
ferent devices. From this figure, we observe that the power values
at frequency OHz are quite large and distinguishable for different
devices. The power values at OHz represent the DC power that have
the same problem as the mean values (in time domain) that we have
discussed earlier. The power value at O0Hz is highly sensitive to the
orientation of the smartphone. Hence, we exclude the DC power
values at OHz from our potential features set.

In frequency domain, we have a total of 1024 frequency "bin" be-
tween OHz and 59Hz. Since the power values after 3.5Hz is negli-
gible for all devices, we only consider the power values of the first
64 frequency bins (excluding the first bin corresponding to 0Hz) as
our potential features. These 64 frequency bins (from 2 to 65) cover
the frequency range 0-3.5Hz approximately. Figure 4(b) shows the
power values corresponding to the 64 frequency bins for different
devices. Figure 4(c) shows the Inverse FFT signal (IFFT) of the
power values when applied to the 64 frequency bins. In this figure,



each device shows a unique signal pattern even though we cutoff
the higher frequencies as well as the DC power component of the
frequency spectrum. Therefore, we consider these 64 power values
of the frequency bins from 2 to 65 as potential features for further
evaluation.

Finally, we rank the potential features by measuring their informa-
tion gain with respect to the training data. In order to calculate the
information gain, we calculate the entropy value of each feature
for the whole training data. High entropy value indicates that the
corresponding feature contains high information to differentiate be-
tween different devices. We select the top ten features based on the
calculated gain values of these features. The selected ten features
ordered based on their gain values are shown in table 1. Figure 5
shows how the training samples are spaced in 3D with respect to
the top 3 selected features from that table.

[ Time Domain Features

[ Variance of the magnetic sensor reading in a window ]

| Frequency Domain Features | Power values at Frequency bin 2,4,3,5,17,7,15,19,18 |

Table 1: Selected feature set for classification.
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Figure 5: Scatter plot of all training data with respect to three
features: Variance, Power at frequency bin 2, and Power at
frequency bin 4. These 3 features have highest gain values
compare to other features.

3.3 Classification

As we discussed earlier, we split the collected data over three days
to two sets; training data and testing data. The data collected in
the first two days is used as a training data to build the classifi-
cation model, while the data collected in the third day is used as
a testing data to evaluate the developed classifier. In training and
testing the classification model, we use Weka Software [4] because
it is very flexible in both analyzing the features and building the
classifier model. In building the classification model, we select
the classifier with low-complexity implementation of the training
algorithm, such as Bayes Network, Naive Bayes, and K-nearest
neighbor classifier. Table 2 shows the number of epochs of the
training data and the testing data we use in classification. Table
3 shows the classification accuracy by using the testing data for
different classification models. In this paper we use k=3 for the
K-Nearest Neighbor classifier.

Scenarios # training data | # testing data
All Off 64 30
Heater On 47 23
Heater Paused 32 11
Kitchen Oven On 67 21
Air Conditioner On 98 34
Microwave On 37 13
Light On 71 17
Laptop Charged 94 24

Table 2: Number of Training and Testing sample for different
devices.

Algorithm Accuracy
K-NN 95.38%
Bayes Network | 98.27%
Naive Bayes 97.69%

Table 3: Classification accuracy using different algorithms.

In order to evaluate the robustness of our selected features, we
evaluate different classification models built with different training
data sets. In doing this, we use the data collected over one day as
the training data and the data collected over the other two days as
the testing data. Using round-robin fashion over all three days data
collection, we get three different training and testing data sets. We
use Bayes Network classifier to build three different classification
models corresponding to the three training data sets. Table 4 shows
the accuracy we have obtained over the three models. The high
accuracy results of MagnoTricoder system in this table validates
the robustness of the selected features regardless of the day used
in building the classification model. In addition we observe that
the accuracy results in Table 4 is quite the same as that of Table
3. Such observation indicates that our selected features are robust
enough in terms of accuracy even if we use smaller size of training
data.

Ist day’s data | 2nd day’s data | 3rd day’s data | accuracy
T X X 93.56%
X T X 97.07%
X X T 95.02%

Table 4: In the table X = Data is used for testing and T = Data is
used for training. Accuracy of detecting running devices under
different scenarios.

4. PERFORMANCE EVALUATION AND DIS-

CUSSION

In the following subsections, we evaluate the performance of Mag-
noTricoder framework under two main scenarios.

4.1 Different Days/Times Scenario

In this scenario we evaluate the accuracy of the proposed system
with data collected on different days and times. In order to evalu-
ate such scenario, we use the Bayes Network classification model
that is build using the first two days training data as described in
Section 3.3. Our testing data set is collected over another two
days after two weeks period from the training data. In the first
day, the testing data is collected at night between 8:00pm-8:30pm,
while the testing data is collected in the second day at morning
between 10:00am-10:30am. Table 5 shows the accuracy results
of the new collected testing dataset. The equivalent accuracy in
detecting devices over different days validates the robustness of
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Figure 4: (a) Power values of different devices for the frequency range 0-3.5Hz (b) Power values for the 64 frequency bins (from 2 to
65) for better visualization (c) Output of the IFFT when applied to the 64 frequency bins for different devices.

our system over different days/time. In addition, the high accuracy
results in Table 5 indicates that the proposed system is consistent
over long duration.

Day/Time accuracy
First Day/ Night 93.56%
Second Day/Morning | 97.07%

Table 5: Accuracy of determining running machines under
different Days/Time.

4.2 Different Phones Scenario

In this section, we evaluate the performance of the developed sys-
tem under the usage of different phones of the same model. In
pervious analysis we have used the same phone for collecting both
the training and the testing data. In this experiment, we use two
Nexus S phones in which one phone is used to collect the train-
ing data while the other phone to collect the testing data. For
classification, we use the Bayes Network classifier for detecting
and identify running devices. Table 6 shows the confusion matrix
for the collected testing dataset. Using 10-fold cross validation,
we observe an overall average accuracy of 95% over our testing
dataset. In the confusion matrix table 6, the accuracy of detecting
Heater Paused event is low due to the fact that in our feature space
the Oven event and the Heater Paused event are very much closer
to each other. Figure 5 represents the fact that the features extracted
from the Heater Paused event almost overlap with the features from
the Oven event. Such circumstance generates classifier confusion
between the two devices. As a result, we found in the confusion
matrix that among the six Heater Paused event four of them were
detected incorrectly.

S. RELATED WORK

There are number of research works that have focused on detecting
and monitoring the running devices. Monitoring the electric energy
consumption at homes motivates most of these works. Researchers
and industries have developed such real time energy monitoring
systems for householders [10, 1, 2, 3, 7, 8, 12, 6, 9]. Typically,
monitoring home energy consumption requires continuous sens-
ing of the running devices. Unlike this typical requirement, our
smartphone framework does not require such continuous sensing
for the running devices. Our proposed framework uses CBP as a
single-point sensing. Single-point sensing idea has been utilized

All Off Heater Heater Oven Air Conditioner Microwave Light Laptop

On Paused  On On On On  Charged
All Off 21 0 0 0 0 0 0 0
Heater On 0 12 0 0 0 0 0 0
Heater Paused 0 0 2 4 0 0 0 0
Oven On 0 0 1 8 0 0 0 0
Air Conditioner On 0 0 0 0 21 0 0 0
Microwave On 0 0 0 0 0 4 0 0
Light On 0 0 0 0 0 0 11 0
Laptop Charged 0 0 0 0 0 0 0 18

Table 6: Confusion matrix over the collected testing data from
a different phone than the one used to collect the training data.

by researchers in other previous works with main objectives to
infer the total power usage of the house and to detect any electrical
event[10],[9],[6]. In [10], authors proposed to attach a custom plug-
in sensor to the main power-line at home to detect any electrical
event. The attached sensor detects any electrical noise or abrup-
tion in power-line due to the switching of an electrical device or
due to the noise created by certain devices while in operation. In
that work, authors used the noise or abruption in power-line as
a signature to detect the event of turning on or off a particular
light, a television set or an electric stove. In this paper we utilize
the noise in the magnetic sensor reading rather then directly using
the electrical noise. The ElectricSense [6] system is an another
example of single-point sensing. ElectricSense is based on the
idea that most modern electronics use Switch Mode Power Supply
(SMPS) that continuously generates high frequency electromag-
netic interference (EMI) throughout home’s power-line. In that
paper, authors use this EMI as a signature to detect the event of
a device or a machine. In [9], authors use a contactless power con-
sumption sensor attached to the outside of home’s circuit breaker
panel to monitor the total power consumption of the house. The
author leverages the technique of sensing the magnetic field that
is induced by the 60Hz current in order to infer the total power
consumption in real-time. However, all these system requires ad-
ditional custom sensing hardware to be installed in the house’s
power line for continuous period of sensing. On the contrary, our
purposed system doesn’t require to setup any custom sensor for
the house’s power line. In addition, the objective and the context of



our application are different from continuous monitoring of electric
events at home as in the previous works.

Non-Intrusive Load Monitoring (NILM) is one of the state-of-art
work in monitoring home devices for measuring power consump-
tion. NILM is based on the idea that, each individual running
device generates a distinctive signature on the power distribution
system of the building. In [5], authors use several additional en-
vironmental sensors like light intensity, temperature, acceleration
and sound level with the NILM system to enhance the signature of
the devices. In their work, they relate the power distribution event
with the environmental sensing data to extract the relevant device-
related information from the sensors. In [8], ViridiScope is a power
monitoring system for individual devices at home, which uses mag-
netic, acoustic and light sensor to compute the consuming energy
of the devices. The VirdiScope system collects the sensing reading
by putting sensor devices near the device. In [11], the authors
use radio frequency to identify non-WiFi devices like, microwave,
video camera, cordless phone etc. Inferring from the article [11],
radio frequency can be a potential way to identify very specific
running devices. Again, all these schemes require the installation
of additional sensing hardware.

6. CONCLUSION AND FUTURE WORK

In this paper, we evaluate the feasibility of using the magnetic
sensor in smartphones to detect the running devices at home by
using the Circuit Breaker Panel (CBP) as a single-point sensing.
The proposed framework utilizes the effects of the conducting AC
current over the magnetic sensor in smartphones. Performance
evaluation of the experiments and the corresponding results show
that this approach is feasible and promising. However, there are
some challenges in using the smartphone’s magnetic sensor in de-
tecting devices using the CBP. For example, we have noticed that
the further the smartphone is placed from the CBP, the less sensitive
the magnetic sensor becomes in detecting devices. The system
generates the best accuracy when the phone is placed on the CBP
cover as shown in Figure 2(a). This behavior is due to the low
sensitivity of the magnetic sensor in Nexus S phone. In addition,
the position we hold the phone at the CBP cover affects the de-
tection accuracy. In future, we plan to investigate more about this
issue. Another challenge is that the magnetic sensor chip in Nexus
S phones uses a very narrow bandwidth low-pass filter in order to
reduce the electromagnetic interference effect from the surround
environment. This feature prevents the designed framework from
utilizing the high frequency features that might improve the detec-
tion accuracy. In addition, further analysis of our framework is
needed under more complex scenarios. As future work, we plan to
focus on the following complex scenarios:

e Detecting multiple running devices: In this scenario, we
will explore how to detect multiple running devices at the
same time using the single-point sensing idea. While two or
more devices are on, the AC current in the main power-line is
expected to be higher than the AC current for each individual
machine. The question is whether this aggregated AC current
is a linear function of the individual device’s AC current. If
not, then what type of function it is. In addition, we need
to evaluate the relationship between the increase in the AC
current and the fluctuation of the magnetic sensor readings.

e Position of the Smartphone on the CBP cover: We have
seen that the position of the smartphone on the CBP cover
has some effects on the collected sensor data. We would
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like to explore how the data sensed for a particular device

is changing with the position of the smartphone on the CBP

cover. The typical architecture of the CBP is consistent among
different residential homes. So we are expecting to have

common behavior of the sensing data for holding the smart-

phone at different positions at the CBP. In future we like to

analyze this scenario in more details.

Evaluating Different Phone models: In this paper we have
evaluated our system with different phones of the same model
(i.e., Nexus S). In future, we will explore how our system
performs using different phone models. Usually, different
phone models use different manufactured magnetic sensor
chips. It is more likely that the effect of EMI will vary with
different magnetic sensor chips. Therefore, it is important to
understand how to modify the proposed framework to sup-
port different magnetic sensor chips in order to detect and
identify running devices at home wit high accuracy.
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