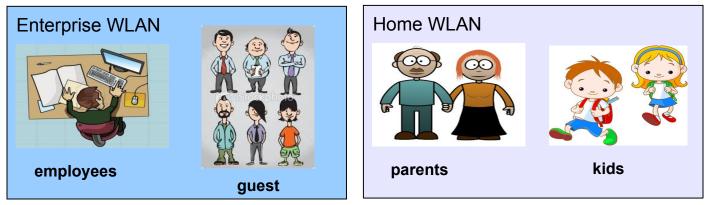
weSDN: SDN Extends to Wireless End Devices

Mostafa Uddin, Old Dominion University Mentor: Jeongkeun "JK" Lee



© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidentia

WLAN Virtualization

Wireless LANs are becoming ubiquitous

WLAN virtualization enable effective sharing of wireless resources by a diverse set of users with diverse requirement

WLAN Challenges

Interference

Radio Resource Management (RRM) can monitor and react to interference

Lack of control over Client-to-AP uplink traffic

(SDN enable) APs can only control down-link traffic

Note: Ethernet is p2p link, SDN-enabled Ethernet edge can do virtualization

Wireless medium is shared

Uncontrolled uplink TX can impact other client performance

Our Solution: Extend SDN to Wireless End Device

Control the uplink TX from the client side using SDN framework

Manage uplink 802.11 QoS settings

e.g. One client greedily using highest priority can unfairly dominate uplink air-time resource.

Can Enable end-to-end QoS provisioning.

⁴ © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential

weSDN approaches

Use Open vSwitch on end device to monitor and manage application traffic

Use *p*TDMA, a TDMA like scheduling, to virtualize airtime resources between network slices

Maintain *p*TDMA scheduling using Linux Qdisc

Provide trusted information about user's application traffic

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.

Design Question 1

Will end user allow the network to control their device traffic?

It is not a new concept to centrally control the client devices (e.g. PC COE, BYOD solutions, VPN client, mobile WAN acceleration).

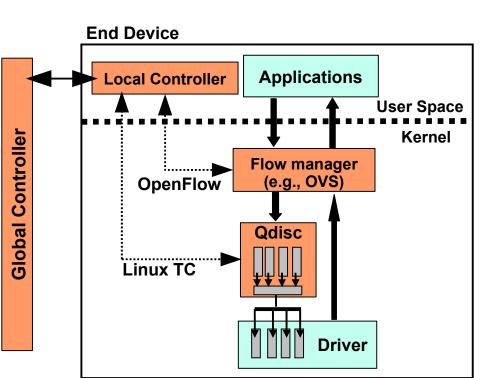
It allows following benefits:

- Support enhance network security, end-to-end QoS and WLAN virtualization.
- Users can have better and predictable network performance.

Operators can take drastic measures (drop frames, TCP ACKs) on non-participating clients

Design Question 2

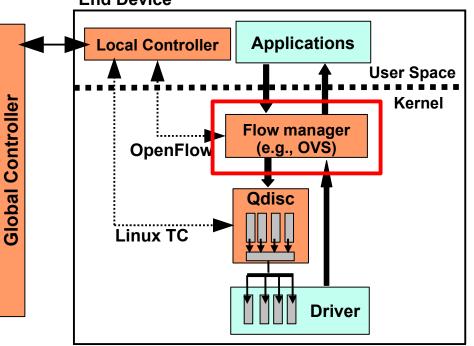
Where should the SDN APIs be integrated in the client software stack?


We believe WiFi protocol and the client WiFi stack are better to be kept intact, Why?

- Hard to deploy diverse vendors, chipsets, drivers.

Instead of driver hacking we want to leverage and extend existing OS/SDN APIs

- Implement the traffic airtime scheduler in Linux Traffic Control (TC) qdisc.
- Integrate the Open-vSwitch (OVS) above the qdisc in Android.


weSDN Architecture

- 1. pTDMA Scheduler (Linux Qdisc)
- 2. Flow manager (e.g. Open vSwitch, OVS)
- 3. Local Controller
- 4. Global Controller

Flow Manager

End Device

1. It is a software OpenFlow switch (e.g. OVS)

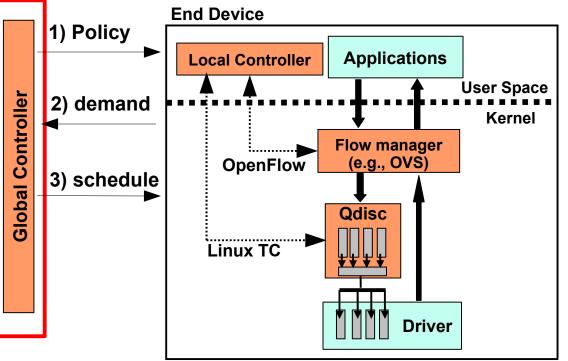
2. Collect Flow statistics:

– OF Stat extension: burst duration, burst rate and inter-burst time.

- 3. Ensure correct QoS marking
 - e.g IP DSCP/TOS or VLAN PCP

Local Controller

End Device


1. Identify flows correspond to each application.

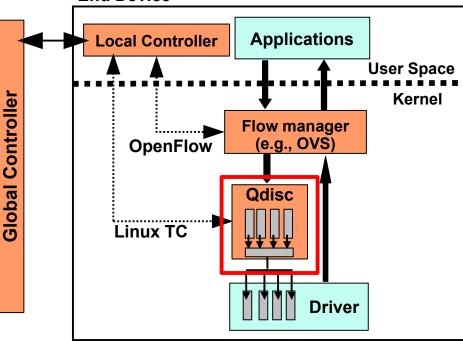
2. Generate flow rules for OVS

- Based on per-application policy given by central controller or the user.

Global Controller

Interacts with local controller in 3 steps

1) Provides per-slice/users/app policy to local controller.


2) local controller send aggregate demand to global controller.

3) Compute schedules and send to end device.

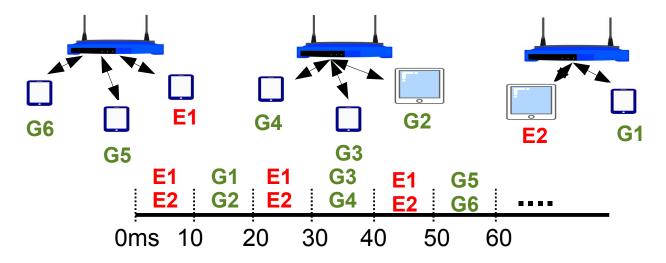
*p***TDMA Qdisc**

End Device

1. Receive *time window* from the local controller to start/stop dequeueing.

– Time Window: e.g. [Start time, active duration, sleep duration]

- e.g. 05:30:30, 10ms, 30ms


2. *p*TDMA qdisc is an extension to linux multiq that supports 802.11e QoS.

Manage airtime share between network instances (their clients) that collocate in space and channel

Assigning separate airtime slices among different network instances

*p***TDMA: Scheduling Principle**

Allocate large enough time window to transmit and receive multiple packets

Schedule multiple clients in a common slot to maximize channel utilization

The interval between consecutive time windows should be based on applications' traffic pattern & demand

¹⁴ © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.

Technical Challenges

Milli-second level synchronization between the phones is needed for effective p TDMA

Achievable by GPS

Note) traditional per-packet TDMA requires micro-second level time sync

Driver buffering delay is large

Bufferbloat: Large ring packet buffer (100 to 300, total bytes >150KB) used by WiFi, Ethernet drivers

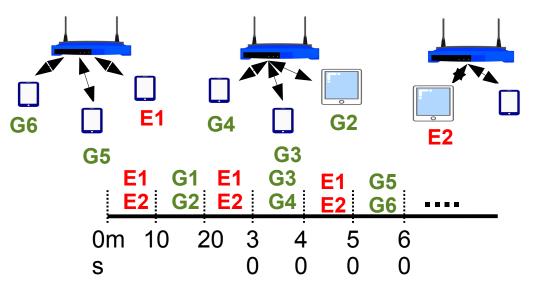
Byte Queue Limit(BQL) for Ethernet driver in Linux: buffer size limit is dynamically set based on recent "byte" dequeued by the NIC

We set hard byte limit in Wi-Fi Driver to 15KB, enough for 10 pkt 802.11 aggregation

Prototype

Prototyped *weSDN* client-side component on eight Google Nexus 4 Android phones

Root the device to install OVS and *p* TDMA qdisc kernel modules.


Re-Build the kernel image

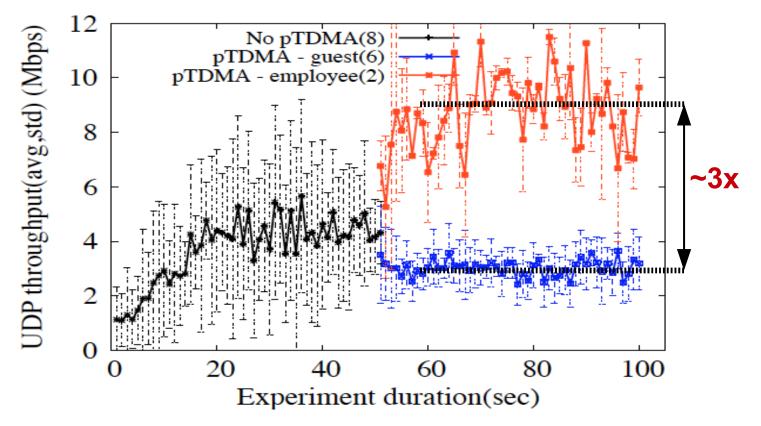
To implement the Wi-Fi driver byte limit in Nexus 4 WiFi driver

Note) some other phones have Wi-Fi driver as kernel module (e.g. Nexus S)

Experiment

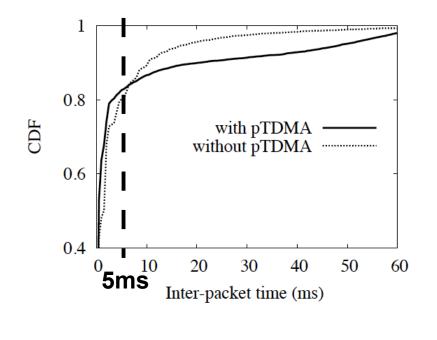
We formed two network slices

"employee" network with 2 devices

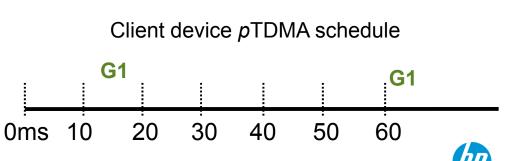

"guest" network with 6 devices

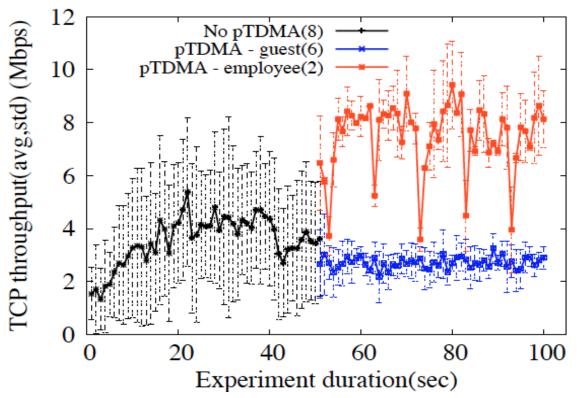
Applied following *p* TDMA schedule with 50:50 airtime share between two slices

3:1 airtime ratio btw an employee and a guest.


Evaluation: Uplink UDP

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.


Evaluation: Sleeping Time


Assume the driver goes to sleep state after 5ms of inactivity in WMM-PS

In non-*p*TDMA, client sleeps 28% of the time.

In pTDMA, client sleeps 80% of the time

Evaluation: Uplink TCP

1. Increased transmission time in pTDMA schedule do not adversely effect TCP performance.

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential.

Conclusion

Summary

Integrate SDN API to end clients for WLAN virtualization

Demonstrate WLAN virtualization by *p*TDMA

Future Work

OpenFlow Statistics extension for burst measurement

pTDMA scheduler

Controller Implementation

In-band control channel

²¹ © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential

Acknowledgement

- Jean Tourrilhes
- Souvik Sen
- Kyu-Han Kim
- Sujata Banerjee
- Manfred Arndt, ATG
- Zafar Qazi

Backup Slide: Power Saving

WMM Power Save in a Wi-Fi Network Client dozes between Access point buffers frames frames to save power while client dozes Beacon DATA DATA with TIM ACK (more=1) ACK (more=0) ACK Downlink Access frames point Time . Uplink Client Voi frames $((\mathbf{0}))$ **PS-Poll** PS-Poll ACK PS-Poll ACK Client Client awake dozina Wi-Fi Network Wi-Fi Phone DCF Access Delay - Same for all traffic (client) Access point User User 2

1. weSDN leverage WMM-PS to indirectly confine the downlink traffic to the time window.

2. pTDMA allows to efficiently utilize the WMM-PS to have more sleeping time without sacrificing the throughput performance.

Wi-Fi Alliance, "WMM[™] Power Save for Mobile and Portable Wi-Fi certified devices" tech. Repo. 2005

© Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential

